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The Problem With Vector Fields

Vector Calculus

MATH2001 looks at, along with other topics, vector calculus.

For
example, in MATH2001 you learn about:

derivatives of vector fields (divergence, curl),

integrals of vector fields (surface integrals, Stokes’ theorem).

The main objects of interest are vector fields, or maps that assign to each
point in R3 a vector in R3.

I claim that there is an object that is more natural than the vector field for
doing vector calculus.

Since I want to talk about half a semester’s worth of content, this talk
might take a while. (Sorry!)
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The Problem With Vector Fields

Vector Fields

Definition

A vector field is a (smooth) map F : Rn → Rn.

We can visualise vector fields as assigning to each point in Rn an
arrow/vector.

F (x, y) = (x, y) F (x, y) = (x2 − y2, x2 + y2) F (x, y) = (x2 − y2 − 4, 2xy)

We will denote the vector space of all vector fields on Rn as X(Rn).
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The Problem With Vector Fields

Vector Fields

Question

How do you differentiate a vector field?

Single variable functions: derivative

Multivariable functions (scalar fields): directional derivative

Vector fields: divergence, curl, ... ????

Why are there multiple very different ways to differentiate a vector field?
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1-Forms

1-Forms

Definition

A covector is a linear map Rn → R.

Definition

A 1-form is a covector field. That is, it is a (smooth) map
ω : Rn → (Rn → R) that sends p ∈ Rn to a covector ωp : Rn → R.

We will denote the set of all 1-forms on Rn as Ω1(Rn).
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1-Forms

Examples of 1-Forms

Example

ω(x ,y)(u, v) = 0 is a 1-form that sends every vector to 0.

Example

ω(x ,y)(u, v) = u is a 1-form that sends a vector to the value of its x
component. We give this 1-form a special name: dx . For example,

dx(0,0)(4, 2) = 4.

Similarly, we denote by dy the 1-form that takes a vector to its y
component:

dy(x ,y)(u, v) = v .
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1-Forms

Examples of 1-Forms

Example

ω(x ,y)(u, v) = xu is a 1-form that depends on the point (x , y) we evaluate
it at. It is still linear in u and v , though.

For example,

ω(1,1)(1, 3) = 1, ω(2,1)(1, 3) = 2.

We can write ω = x dx .

Example

ω(x ,y)(u, v) = y2u + 2x2v is a 1-form (that is linear in u and v , but not in
x and y). Here, ω = y2 dx + 2x2 dy .
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1-Forms

Examples of 1-Forms

Example

ω(x ,y)(u, v) = uv is not a 1-form, as it is not linear in u and v .

For
example,

ω(0,0)(1, 1) = 1,

but
ω(0,0)(2, 2) = 4 ̸= 2 · ω(0,0)(1, 1).

In general, we cannot multiply 1-forms together and get another 1-form.
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1-Forms

Structure of X(Rn) and Ω1(Rn)

The spaces X(Rn) and Ω1(Rn) are both vector spaces (with pointwise
addition and scalar multiplication):

(F + G )(x) = F (x) + G (x), (c · F )(x) = c · F (x),

(ω + ρ)p(x) = ωp(x) + ρp(x), (c · ω)p(x) = c · ωp(x).

Both vector spaces are n-dimensional, with bases

{∂x1, . . . , ∂xn} for X(Rn),

{dx1, . . . ,dxn} for Ω1(Rn),

where ∂x i (x) = e i = (0, . . . , 1︸︷︷︸
i th spot

, . . . , 0).

Careful: the coefficients are functions Fi (x1, . . . , xn), not just scalars!
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1-Forms

Visualising 1-Forms

An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end
we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what
value a vector is assigned, simply draw the vector and count the number of
lines it crosses.
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Visualising 1-Forms

An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end
we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what
value a vector is assigned, simply draw the vector and count the number of
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An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end
we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what
value a vector is assigned, simply draw the vector and count the number of
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1-Forms

Visualising 1-Forms

An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end
we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what
value a vector is assigned, simply draw the vector and count the number of
lines it crosses.

ω = 0 dx(0,0)(2, 1) = 2
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1-Forms

Visualising 1-Forms

An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end
we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what
value a vector is assigned, simply draw the vector and count the number of
lines it crosses.

ω = 0 ω = dx ω = x dx
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Visualising 1-Forms

An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end
we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what
value a vector is assigned, simply draw the vector and count the number of
lines it crosses.

ω = 0 ω = dx x dx(1,0)(1, 0) = 1
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1-Forms

Visualising 1-Forms

An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end
we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what
value a vector is assigned, simply draw the vector and count the number of
lines it crosses.

ω = 0 ω = dx x dx(3,0)(1, 0) = 3
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1-Forms

Visualising 1-Forms

Some 1-forms are a bit harder to draw.

ω = dx + 2dy ω = x dy ω = x dx + y dy
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1-Forms

Visualising 1-Forms

For n = 3, we instead draw planes in 3D space. To see what value a vector
is assigned, count the number of planes it crosses.

ω = dx ω = dy ω = dx + dy + dz
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1-Forms

Vector Field ↔ 1-Form Correspondence

We want to do vector calculus on 1-forms, so we need a way to translate
between the languages of vector fields and 1-forms.

Luckily for us, Rn is already equipped with a tool that allows us to go
from vectors to scalars: the dot product ⟨·, ·⟩.

In particular, let F ∈ X(Rn) be a vector field. We can define a 1-form
ω ∈ Ω1(Rn) by

ωp(x) = ⟨F (p), x⟩ .

Because the dot product is non-degenerate, this map is injective!
Therefore, it is an isomorphism (since it is a linear map) and has an
inverse.
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1-Forms

Vector Field ↔ 1-Form Correspondence

Definition

The flat operator ♭ : X(Rn)→ Ω1(Rn) is defined by

(F ♭)p(x) = ⟨F (p), x⟩ .

The sharp operator ♯ : Ω1(Rn)→ X(Rn) is defined by

⟨ω♯(p), x⟩ = ωp(x).

Together, these operators are called the musical isomorphisms.

The musical isomorphisms give a one-to-one correspondence

X(Rn)←→ Ω1(Rn).
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1-Forms

Vector Field ↔ 1-Form Correspondence

Example

Recall that ∂x i (x) = e i .

We have

(∂x i )♭p(x) =
〈
e i , x

〉
= (dxi )p(x).

We have “lowered” the i , hence the name ♭.

In general, the following are identified under the musical isomorphisms:

n∑
i=1

Fi (x1, . . . , xn) ∂x
i ←→

n∑
i=1

Fi (x1, . . . , xn)dxi .

For example, F (x , y) = (y , x) would be identified with y dx + x dy .
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1-Forms

Visualising the Musical Isomorphisms

We can visualise ♭ by recalling that v 7→ ⟨u, v⟩ projects v onto u.

This
means we want the value of this map to:

change the most if we move parallel to u,

stay the same if we move orthogonally to u.

This means we want to draw our lines perpendicular to the arrows in the
vector field!

F = (1, 0)
ω = dx

F = (x, y)
ω = x dx + y dy

F = (cos x sin y, sin x cos y)
ω = cos x sin y dx + sin x cos y dy

The inverse operator ♯ can be visualised in a similar way.
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1-Forms

The Gradient

We want to do calculus on forms. But first, let’s look at the first vector
field we learn of that is relevant to calculus.

Definition

The gradient of a function f : Rn → R is the vector field

∇f = grad f =
n∑

i=1

∂f

∂x i
∂x i =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

This is a vector field, so can be turned into a 1-form through ♭. What does
this look like?
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1-Forms

The Gradient

Definition

The exterior derivative of the function f : Rn → R is the 1-form

df = (grad f )♭ =
n∑

i=1

∂f

∂x i
dxi .

We have
dfp(x) = ⟨grad f (p), x⟩ = fx(p) = x(f )(p).

This is the directional derivative!

Remark: MATH1052/1072 says we have to instead dot with the unit
vector x̂ = x/ ∥x∥. We don’t do this, otherwise df wouldn’t be linear.
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1-Forms

The Gradient

Recall that grad f is orthogonal to the level sets (contours) of f .

Because ♭ draws lines perpendicular to the vector field, this means that df
is simply a contour plot of f .

f (x, y) =
3

3+(x+2)2+2y2
+ 3

3+(x−2)2+2y2 grad f df
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k-forms

Differentiating a 1-Form

Let’s take the derivative of a 1-form! What ingredients do we need?

Everything needed to evaluate the 1-form, and

A vector that says which direction to take the derivative in.

This means that the derivative of a 1-form will take in two vectors at each
point.

Enter: the 2-form.
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k-forms

2-Forms

Definition

A 2-form assigns to each point an alternating bilinear map Rn × Rn → R.
The space of all 2-forms is denoted Ω2(Rn).

Alternating means ωp(u, v) = −ωp(v , u).

Why do we want 2-forms to be alternating?

Allows us to keep track of orientation (think u × v = −v × u).

If ωp is bilinear, then ωp alternating ⇐⇒ ωp(v , v) = 0.
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k-forms

Visualising 2-Forms

1-forms were visualised by seeing how many lines a single vector crossed
(for n = 2).

2-forms have two vector inputs, which draw a parallelogram. Accordingly,
instead of intersecting lines, we count the number of points the
parallelogram contains.
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1-forms were visualised by seeing how many lines a single vector crossed
(for n = 2).

2-forms have two vector inputs, which draw a parallelogram. Accordingly,
instead of intersecting lines, we count the number of points the
parallelogram contains.
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k-forms

Visualising 2-Forms

1-forms were visualised by seeing how many lines a single vector crossed
(for n = 2).

2-forms have two vector inputs, which draw a parallelogram. Accordingly,
instead of intersecting lines, we count the number of points the
parallelogram contains.
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k-forms

Visualising 2-Forms

For n = 3, we draw lines in 3D space.

ω = dx ∧ dy ω = dy ∧ dz
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k-forms

The Wedge Product

How can we generate 2-forms?

One way is the wedge product.

Definition

The wedge product is the operator ∧ : Ω1(Rn)× Ω1(Rn)→ Ω2(Rn)
defined by

(α ∧ β)(x1, x2) = α(x1) · β(x2)− α(x2) · β(x1).

Note that the definition immediately implies α ∧ α = 0.

Max Orchard Vector Calculus Without Vectors August 29, 2025 25



k-forms

The Wedge Product

How can we generate 2-forms? One way is the wedge product.

Definition

The wedge product is the operator ∧ : Ω1(Rn)× Ω1(Rn)→ Ω2(Rn)
defined by

(α ∧ β)(x1, x2) = α(x1) · β(x2)− α(x2) · β(x1).

Note that the definition immediately implies α ∧ α = 0.

Max Orchard Vector Calculus Without Vectors August 29, 2025 25



k-forms

The Wedge Product

How can we generate 2-forms? One way is the wedge product.

Definition

The wedge product is the operator ∧ : Ω1(Rn)× Ω1(Rn)→ Ω2(Rn)
defined by

(α ∧ β)(x1, x2) = α(x1) · β(x2)− α(x2) · β(x1).

Note that the definition immediately implies α ∧ α = 0.

Max Orchard Vector Calculus Without Vectors August 29, 2025 25



k-forms

The Wedge Product

How can we generate 2-forms? One way is the wedge product.

Definition

The wedge product is the operator ∧ : Ω1(Rn)× Ω1(Rn)→ Ω2(Rn)
defined by

(α ∧ β)(x1, x2) = α(x1) · β(x2)− α(x2) · β(x1).

Note that the definition immediately implies α ∧ α = 0.

Max Orchard Vector Calculus Without Vectors August 29, 2025 25



k-forms

Structure of Ω2(Rn)

We know that Ω1(Rn) has a canonical basis given by {dxi}. Is there a
canonical basis for Ω2(Rn)?

It turns out that {dxi ∧ dxj}i<j is a basis for Ω2(Rn). That is, all 2-forms
can be generated with just the wedge product alone.
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k-forms

Visualising the Wedge Product

Since the wedge product acts as multiplication, along each line in one
direction, we need to count the number of times we hit lines in the other
directions.

The wedge product can therefore be seen as the intersection of the lines
drawn by two forms.

dx and dy dx ∧ dy
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k-forms

The Exterior Derivative

We finally have the tools we need to define the derivative of a 1-form.

Definition

The exterior derivative is the map d : Ω1(Rn)→ Ω2(Rn) given on
multiples of basis forms by

d(f dxi ) =
n∑

j=1

∂f

∂xj
dxj ∧ dxi

and extended additively.
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k-forms

Visualising the Exterior Derivative

Intuitively, if ω ∈ Ω1(Rn), then dω(x, y) measures the difference in the
change in ω(y) as you move along x and the change in ω(x) as you move
along y:

dω(x, y) = x(ω(y))− y(ω(x)) (for constant x, y).

The exterior derivative can therefore be seen as the boundary of the lines
drawn by a form.
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k-forms

k-forms

The above constructions can be generalised to k-forms (k-linear
alternating maps Rn × · · · × Rn︸ ︷︷ ︸

k times

→ R assigned to each point).

The space of all k-forms is denoted Ωk(Rn).

The wedge product and exterior derivative extend naturally, though d
satisfies a “graded” product rule

d(ω ∧ α) = (dω) ∧ α+ (−1)kℓω ∧ (dα),

ω ∈ Ωk(Rn), α ∈ Ωℓ(Rn).

Important fact: by the symmetry of mixed partial derivatives, d(dω) = 0
for all ω. This corresponds to the fact that ∂(∂X ) = ∅.
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k-forms

Structure of Ωk(Rn)

As we’ve come to expect, a basis for Ωk(Rn) is given by

{dxi1 ∧ · · · ∧ dxik}i1<···<ik
.

What happens in Ωn+1(Rn)? A basis is given by n + 1 forms wedged
together. This means that we must have a repeated dxi somewhere! Since
∧ is alternating, all such wedge products are zero. This means:

Proposition

If k > n, then Ωk(Rn) = {0}. That is, Ωn(Rn) is the highest order
possible. Moreover, dim(Ωn(Rn)) = 1.

Remark: A scalar field f : Rn → R can be thought of as taking in zero
vectors. Because of this, we say scalar fields are 0-forms, and denote
C∞(Rn,R) = Ω0(Rn).

Max Orchard Vector Calculus Without Vectors August 29, 2025 33



k-forms

Structure of Ωk(Rn)

As we’ve come to expect, a basis for Ωk(Rn) is given by

{dxi1 ∧ · · · ∧ dxik}i1<···<ik
.

What happens in Ωn+1(Rn)?

A basis is given by n + 1 forms wedged
together. This means that we must have a repeated dxi somewhere! Since
∧ is alternating, all such wedge products are zero. This means:

Proposition

If k > n, then Ωk(Rn) = {0}. That is, Ωn(Rn) is the highest order
possible. Moreover, dim(Ωn(Rn)) = 1.

Remark: A scalar field f : Rn → R can be thought of as taking in zero
vectors. Because of this, we say scalar fields are 0-forms, and denote
C∞(Rn,R) = Ω0(Rn).

Max Orchard Vector Calculus Without Vectors August 29, 2025 33



k-forms

Structure of Ωk(Rn)

As we’ve come to expect, a basis for Ωk(Rn) is given by

{dxi1 ∧ · · · ∧ dxik}i1<···<ik
.

What happens in Ωn+1(Rn)? A basis is given by n + 1 forms wedged
together.

This means that we must have a repeated dxi somewhere! Since
∧ is alternating, all such wedge products are zero. This means:

Proposition

If k > n, then Ωk(Rn) = {0}. That is, Ωn(Rn) is the highest order
possible. Moreover, dim(Ωn(Rn)) = 1.

Remark: A scalar field f : Rn → R can be thought of as taking in zero
vectors. Because of this, we say scalar fields are 0-forms, and denote
C∞(Rn,R) = Ω0(Rn).

Max Orchard Vector Calculus Without Vectors August 29, 2025 33



k-forms

Structure of Ωk(Rn)

As we’ve come to expect, a basis for Ωk(Rn) is given by

{dxi1 ∧ · · · ∧ dxik}i1<···<ik
.

What happens in Ωn+1(Rn)? A basis is given by n + 1 forms wedged
together. This means that we must have a repeated dxi somewhere!

Since
∧ is alternating, all such wedge products are zero. This means:

Proposition

If k > n, then Ωk(Rn) = {0}. That is, Ωn(Rn) is the highest order
possible. Moreover, dim(Ωn(Rn)) = 1.

Remark: A scalar field f : Rn → R can be thought of as taking in zero
vectors. Because of this, we say scalar fields are 0-forms, and denote
C∞(Rn,R) = Ω0(Rn).

Max Orchard Vector Calculus Without Vectors August 29, 2025 33



k-forms

Structure of Ωk(Rn)

As we’ve come to expect, a basis for Ωk(Rn) is given by

{dxi1 ∧ · · · ∧ dxik}i1<···<ik
.

What happens in Ωn+1(Rn)? A basis is given by n + 1 forms wedged
together. This means that we must have a repeated dxi somewhere! Since
∧ is alternating, all such wedge products are zero.

This means:

Proposition

If k > n, then Ωk(Rn) = {0}. That is, Ωn(Rn) is the highest order
possible. Moreover, dim(Ωn(Rn)) = 1.

Remark: A scalar field f : Rn → R can be thought of as taking in zero
vectors. Because of this, we say scalar fields are 0-forms, and denote
C∞(Rn,R) = Ω0(Rn).

Max Orchard Vector Calculus Without Vectors August 29, 2025 33



k-forms

Structure of Ωk(Rn)

As we’ve come to expect, a basis for Ωk(Rn) is given by

{dxi1 ∧ · · · ∧ dxik}i1<···<ik
.

What happens in Ωn+1(Rn)? A basis is given by n + 1 forms wedged
together. This means that we must have a repeated dxi somewhere! Since
∧ is alternating, all such wedge products are zero. This means:

Proposition

If k > n, then Ωk(Rn) = {0}. That is, Ωn(Rn) is the highest order
possible. Moreover, dim(Ωn(Rn)) = 1.

Remark: A scalar field f : Rn → R can be thought of as taking in zero
vectors. Because of this, we say scalar fields are 0-forms, and denote
C∞(Rn,R) = Ω0(Rn).

Max Orchard Vector Calculus Without Vectors August 29, 2025 33



k-forms

Structure of Ωk(Rn)

As we’ve come to expect, a basis for Ωk(Rn) is given by

{dxi1 ∧ · · · ∧ dxik}i1<···<ik
.

What happens in Ωn+1(Rn)? A basis is given by n + 1 forms wedged
together. This means that we must have a repeated dxi somewhere! Since
∧ is alternating, all such wedge products are zero. This means:

Proposition

If k > n, then Ωk(Rn) = {0}. That is, Ωn(Rn) is the highest order
possible. Moreover, dim(Ωn(Rn)) = 1.

Remark: A scalar field f : Rn → R can be thought of as taking in zero
vectors.

Because of this, we say scalar fields are 0-forms, and denote
C∞(Rn,R) = Ω0(Rn).
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k-forms

Hodge Star

k-forms can be thought of as “dual” to (n − k)-forms: if you wedge a
k-form and an (n − k)-form, you will get the unique (up to a scalar)
n-form.

Definition

The Hodge star ⋆ : Ωk(Rn)→ Ωn−k(Rn) is the linear operator such that if
ω = dxi1 ∧ · · · ∧ dxik , then

ω ∧ (⋆ω) = dx1 ∧ · · · ∧ dxn.

This provides an isomorphism

Ωk(Rn)←→ Ωn−k(Rn).

In fact, ⋆(⋆ω) = (−1)k(n−k)ω.
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k-forms

Visualising the Hodge Star

The Hodge star “completes” a form to the entire space.

The Hodge star can therefore be seen as the orthogonal complement of
the lines drawn by a form.

ω = dx ⋆ω = dy

The fact that ⋆(⋆ω) = (−1)k(n−k)ω corresponds to the fact that
(U⊥)⊥ = U (and U = −U).
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k-forms

The Current Picture (for R3)

This is the picture we’ve built up so far for R3:

Let’s do some calculus! (Finally!)
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Vector Calculus in Forms

Standard Vector Operations

Let F ∈ X(R3), and let’s take the exterior derivative of the associated
1-form.

That is, let’s consider dF ♭. For this example, I will look at
F (x , y , z) = (−y , x , 0).
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Vector Calculus in Forms

Curl as an Exterior Derivative

Definition

The curl is the operator curl : X(R3)→ X(R3) defined by

curl(F ) = (⋆(dF ♭))♯.

X(R3)

Ω0(R3) Ω1(R3) Ω2(R3) Ω3(R3)

♭

d

⋆

d

♯

d

⋆

The ⋆, ♭, ♯ kind of obscure what’s going on: they are just isomorphisms
allowing us to identify one space with another. What we’re really doing is
differentiating a 1-form and interpreting it as a vector field.
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Vector Calculus in Forms

Divergence as an Exterior Derivative

In a similar way, we can see the divergence as the derivative of a 2-form.

Let’s consider F (x , y , z) = (x , y , z).
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Vector Calculus in Forms
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Definition

The divergence is the operator div : X(R3)→ C∞(R3,R) defined by

div(F ) = ⋆d(⋆F ♭).
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Vector Calculus in Forms

The Current Picture (for R3)

X(R3)

Ω0(R3) Ω1(R3) Ω2(R3) Ω3(R3)
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d

⋆

d

♯

⋆

d

Exercise

We know (MATH2001) that conservative vector fields have zero curl:

∇× (∇f ) = 0.

Prove this fact in two lines using the framework of forms. See if you can
come up with another similar fact.
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Vector Calculus in Forms
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Integral Calculus

Integrating Forms

Not only can we differentiate forms, but we can also integrate them (over
a suitable “domain”).

If ω ∈ Ωk(Rn), we can integrate it over a k-dimensional surface S . To do
this, simply count the number of times S intersects ω. In this way, the
integral

∫
S ω is a flux integral.
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Integral Calculus

Integrating Forms

Not only can we differentiate forms, but we can also integrate them (over
a suitable “domain”).

If ω ∈ Ωk(Rn), we can integrate it over a k-dimensional surface S . To do
this, simply count the number of times S intersects ω. In this way, the
integral

∫
S ω is a flux integral.

∫
γ
ω
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Integral Calculus

Fundamental Theorem of Line Integrals

As a warmup, consider a function f : Rn → R and the exterior derivative
df .

Integrating this over a curve γ is the line integral∫
γ
df :=

∫ b

a
dfγ(t)(γ

′(t))dt =

∫
γ
∇f · ds.

Recall that df is the contour plot of f , and the line integral counts how
many lines we cross as we traverse γ. That is, the line integral is the net
height gained in traversing the curve. Mathematically, if γ : [a, b]→ Rn,
then ∫

γ
df = f (γ(b))− f (γ(a)).

This is the fundamental theorem of line integrals.
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Integral Calculus

Fundamental Theorem of Line Integrals

Recall that df is the contour plot of f , and the line integral counts how
many lines we cross as we traverse γ. That is, the line integral is the net
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Integral Calculus

Stokes’ Theorem

This statement can be generalised with Stokes’ theorem.

Theorem (Stokes)

We have (with the correct adjectives for U ⊆ Rn)∫
U
dω =

∫
∂U

ω.
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Integral Calculus

Stokes’ Theorem

This statement can be generalised with Stokes’ theorem.

Theorem (Stokes)

We have (with the correct adjectives for U ⊆ Rn)∫
U
dω =

∫
∂U

ω.

This is actually saying something very trivial: the number of lines that enter
(and don’t exit) a region is the number of lines that enter (and don’t exit)
a region.
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Integral Calculus

The Many Faces of Stokes’ Theorem

Theorem (Stokes)

We have (with the correct adjectives for U ⊆ Rn)∫
U
dω =

∫
∂U

ω.

By varying U and ω, we recover many classical vector calculus theorems.

U ∂U ω dω Theorem

[a, b] {a, b} f f ′(x) dx FTC

γ([a, b]) {γ(a), γ(b)} f (∇f )♭ FTLI

U ∂U ω ∈ Ω1 dω Green’s theorem

S ∂S F ♭ curl(F )♭ Stokes’ theorem

V ∂V ⋆F ♭ ⋆div(F ) Divergence theorem
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Integral Calculus

Further Topics

Some further topics regarding differential forms include:

the exterior calculus on manifolds.

closed and exact forms and the de Rham cohomology.

connections and the Yang–Mills equations.
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Integral Calculus
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