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Vector Fields

Definition

A vector field is a (smooth) map F : R" — R".
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The Problem With Vector Fields

Vector Fields

Definition
A vector field is a (smooth) map F : R" — R".

We can visualise vector fields as assigning to each point in R” an

arrow /vector.

Fix,y) = (xy) Fix,y) = (¢ = %, 5% + 7
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The Problem With Vector Fields

Vector Fields

Definition
A vector field is a (smooth) map F : R" — R".

We can visualise vector fields as assigning to each point in R” an

arrow /vector.

RN
‘f‘\'/)\\\\‘
FA NN,

F(x,y) = (x,¥)

Max Orchard Vector Calculus Without Vectors August 29, 2025



The Problem With Vector Fields

Vector Fields

Definition
A vector field is a (smooth) map F : R" — R".

We can visualise vector fields as assigning to each point in R” an

arrow /vector.

F(x,y) = (x,¥) F(x,y) = (2 = y?, <% +y?) Flx,y) = (2 — y* — 4,2xy)

We will denote the vector space of all vector fields on R" as X(R").
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Vector Fields

How do you differentiate a vector field?
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Vector Fields

How do you differentiate a vector field?

@ Single variable functions: derivative

e Multivariable functions (scalar fields): directional derivative

@ Vector fields: divergence, curl, ... 7777

Why are there multiple very different ways to differentiate a vector field?
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1-Forms

Definition

A covector is a linear map R” — R.
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1-Forms

1-Forms

Definition
A covector is a linear map R” — R.

Definition
A I-form is a covector field. That is, it is a (smooth) map
w:R" — (R” — R) that sends p € R" to a covector wp, : R” — R.

We will denote the set of all 1-forms on R" as Q'(R").
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Examples of 1-Forms

W(x,y)(U,v) = 0 is a 1-form that sends every vector to 0.
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W(x,y)(U,v) = 0 is a 1-form that sends every vector to 0.

W(x,y)(U,v) = u is a 1-form that sends a vector to the value of its x
component. We give this 1-form a special name: dx. For example,
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Examples of 1-Forms

W(x,y)(U,v) = 0 is a 1-form that sends every vector to 0.

W(x,y)(U,v) = u is a 1-form that sends a vector to the value of its x
component. We give this 1-form a special name: dx. For example,

ClX(070)(4-7 2) = 4.

Similarly, we denote by dy the 1-form that takes a vector to its y
component:

dy(x,y)(u, v) =v.
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1-Forms

Examples of 1-Forms

Example

W(x,y) (U, v) = xu is a 1-form that depends on the point (x, y) we evaluate
it at. It is still linear in u and v, though.
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Examples of 1-Forms

Example

W(x,y) (U, v) = xu is a 1-form that depends on the point (x, y) we evaluate
it at. It is still linear in u and v, though. For example,

wan(1,3) =1, wpe(l,3)=2.
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Examples of 1-Forms

Example

W(x,y) (U, v) = xu is a 1-form that depends on the point (x, y) we evaluate
it at. It is still linear in u and v, though. For example,

wan(1,3) =1, wpe(l,3)=2.

We can write w = x dx.
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Examples of 1-Forms

Example

W(x,y) (U, v) = xu is a 1-form that depends on the point (x, y) we evaluate
it at. It is still linear in u and v, though. For example,

wan(1,3) =1, wpe(l,3)=2.

We can write w = x dx.
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x and y).
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1-Forms

Examples of 1-Forms

Example

W(x,y) (U, v) = xu is a 1-form that depends on the point (x, y) we evaluate
it at. It is still linear in u and v, though. For example,

wan(1,3) =1, wpe(l,3)=2.

We can write w = x dx.

W(x,y) (U, v) = y?u+2x?v is a 1-form (that is linear in u and v, but not in
x and y). Here, w = y?dx + 2x%dy.
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1-Forms

Examples of 1-Forms

Example

w(x.y) (U, v) = uv is not a 1-form, as it is not linear in u and v.
(oy) s
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1-Forms

Examples of 1-Forms

Example
W(x,y)(U,v) = uv is not a 1-form, as it is not linear in u and v. For
example,
we,0(1,1) =1,
but

w©0,0)(2,2) =4 # 2w (1,1).
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1-Forms

Examples of 1-Forms

Example

W(x,y)(U,v) = uv is not a 1-form, as it is not linear in u and v. For
example,

wo,0)(1,1) =1,
but
w©0,0)(2,2) =4 # 2w (1,1).

In general, we cannot multiply 1-forms together and get another 1-form.

v
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Structure of X(R") and Q(IR")

The spaces X(R™) and Q(IR™) are both vector spaces (with pointwise
addition and scalar multiplication):

(F+G)(x) = F(x)+ G(x), (c-F)(x)=c-F(x),

(w+p)p(x) = wp(x) + pp(x), (c-w)p(x) = c - wp(x).

Max Orchard Vector Calculus Without Vectors August 29, 2025

10



Structure of X(R") and Q(IR")

The spaces X(R™) and Q(IR™) are both vector spaces (with pointwise
addition and scalar multiplication):

(F+G)(x) = F(x)+ G(x), (c-F)(x)=c-F(x),
(w+p)p(x) = wp(x) + pp(x), (c-w)p(x) = c - wp(x).
Both vector spaces are n-dimensional, with bases
{ox1,...,0x"} for X(R"),

{dxq,...,dx,} for QY(R™),
where Ox'(x) =e' = (0,..., _1 .., 0).
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Structure of X(R") and Q(IR")

The spaces X(R™) and Q(IR™) are both vector spaces (with pointwise
addition and scalar multiplication):

(F+G)(x) = F(x)+ G(x), (c-F)(x)=c-F(x),
(w+p)p(x) = wp(x) + pp(x), (c-w)p(x) = c - wp(x).
Both vector spaces are n-dimensional, with bases
{ox1,...,0x"} for X(R"),
{dxi,...,dx,} for Q}(R"),

where Ox'(x) =¢' =(0,..., ' 1 ,...,0).
ith spot
Careful: the coefficients are functions Fi(xi,...,xp), not just scalars!
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Visualising 1-Forms

An advantage of using vector fields is how easy it is to visualise them.
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How do we visualise 1-forms? There are lots of parameters, and at the end
we get a scalar!
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An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end
we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what

value a vector is assigned, simply draw the vector and count the number of
lines it crosses.
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An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end
we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what
value a vector is assigned, simply draw the vector and count the number of
lines it crosses.

w=20
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Visualising 1-Forms

An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end
we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what
value a vector is assigned, simply draw the vector and count the number of
lines it crosses.

0(0,0)(1,0) =0
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Visualising 1-Forms

An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end
we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what
value a vector is assigned, simply draw the vector and count the number of
lines it crosses.

d

w=20 w = dx
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Visualising 1-Forms

An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end
we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what

value a vector is assigned, simply draw the vector and count the number of
lines it crosses.
w=20 d
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Visualising 1-Forms

An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end
we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what

value a vector is assigned, simply draw the vector and count the number of
lines it crosses.
w=20 d
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Visualising 1-Forms

An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end
we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what

value a vector is assigned, simply draw the vector and count the number of
lines it crosses.
w=20 d

X(0,0)(2,1) =2
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Visualising 1-Forms

An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end
we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what
value a vector is assigned, simply draw the vector and count the number of

lines it crosses.

w=0 w = dx w = xdx
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Visualising 1-Forms

An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end
we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what
value a vector is assigned, simply draw the vector and count the number of

lines it crosses.

w=0 w = dx de(lo)IO—l

Max Orchard Vector Calculus Without Vectors August 29, 2025 11



Visualising 1-Forms

An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end
we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what
value a vector is assigned, simply draw the vector and count the number of

lines it crosses.

w=0 w = dx de(30)10—3
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Visualising 1-Forms

Some 1-forms are a bit harder to draw.
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1-Forms

Visualising 1-Forms

Some 1-forms are a bit harder to draw.

i)

w = dx + 2dy
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1-Forms

Visualising 1-Forms

Some 1-forms are a bit harder to draw.

/%

w = dx + 2dy w = xdy
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1-Forms

Visualising 1-Forms

Some 1-forms are a bit harder to draw.

/%

w = dx + 2dy w = xdy w=xdx+ydy
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Visualising 1-Forms

For n = 3, we instead draw planes in 3D space. To see what value a vector
is assigned, count the number of planes it crosses.
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Visualising 1-Forms

For n = 3, we instead draw planes in 3D space. To see what value a vector
is assigned, count the number of planes it crosses.

LA
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Visualising 1-Forms

For n = 3, we instead draw planes in 3D space. To see what value a vector

is assigned, count the number of planes it crosses.

'TX

w = dx w =dy w=dx+dy +dz
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Vector Field <+ 1-Form Correspondence

We want to do vector calculus on 1-forms, so we need a way to translate
between the languages of vector fields and 1-forms.
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between the languages of vector fields and 1-forms.

Luckily for us, R" is already equipped with a tool that allows us to go
from vectors to scalars:
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between the languages of vector fields and 1-forms.

Luckily for us, R" is already equipped with a tool that allows us to go
from vectors to scalars: the dot product (-,-).

In particular, let F € X(IR") be a vector field. We can define a 1-form
w € QYR™) by
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Vector Field <+ 1-Form Correspondence

We want to do vector calculus on 1-forms, so we need a way to translate
between the languages of vector fields and 1-forms.

Luckily for us, R" is already equipped with a tool that allows us to go
from vectors to scalars: the dot product (-,-).

In particular, let F € X(IR") be a vector field. We can define a 1-form
w € QYR™) by
wp(x) = (F(p),x) -

Because the dot product is non-degenerate, this map is injective!
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Vector Field <+ 1-Form Correspondence

We want to do vector calculus on 1-forms, so we need a way to translate
between the languages of vector fields and 1-forms.

Luckily for us, R" is already equipped with a tool that allows us to go
from vectors to scalars: the dot product (-,-).

In particular, let F € X(IR") be a vector field. We can define a 1-form
w € QYR") by

wp(x) = (F(p),x) -
Because the dot product is non-degenerate, this map is injective!

Therefore, it is an isomorphism (since it is a linear map) and has an
inverse.
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1-Forms

Vector Field <+ 1-Form Correspondence

Definition
The flat operator b : X(R") — QL(R") is defined by

(F")p(x) = (F(p).x) -
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1-Forms

Vector Field <+ 1-Form Correspondence
Definition
The flat operator b : X(R") — QL(R") is defined by

(F")p(x) = (F(p).x) -
The sharp operator § : Q(R") — X(R") is defined by
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1-Forms

Vector Field <+ 1-Form Correspondence

Definition
The flat operator b : X(R") — QL(R") is defined by

(F")p(x) = (F(p).x) -
The sharp operator § : Q(R") — X(R") is defined by

Together, these operators are called the musical isomorphisms.
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1-Forms

Vector Field <+ 1-Form Correspondence

Definition
The flat operator b : X(R") — QL(R") is defined by

(F")p(x) = (F(p).x) -

The sharp operator § : Q(R") — X(R") is defined by

Together, these operators are called the musical isomorphisms.

The musical isomorphisms give a one-to-one correspondence

X(R") +— QYR").
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Vector Field <+ 1-Form Correspondence

Recall that 9x/(x) = e'.
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Vector Field <+ 1-Form Correspondence

Recall that 9x/(x) = e'. We have

(Ox)p(x) = (&, x) = (dx))p()-
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Vector Field <+ 1-Form Correspondence

Recall that 9x/(x) = e'. We have

(Ox)p(x) = (&, x) = (dx))p()-

We have “lowered” the i, hence the name b.
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Vector Field <+ 1-Form Correspondence

Recall that 9x/(x) = e'. We have

(Ox)p(x) = (&, x) = (dx))p()-

We have “lowered” the i, hence the name b.

In general, the following are identified under the musical isomorphisms:

Z Fi(x1,...,%n) Ix' Z Fi(x1,...,xn)dx;.
i=1

i=1
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Vector Field <+ 1-Form Correspondence

Recall that 9x/(x) = e'. We have

(Ox)p(x) = (&, x) = (dx))p()-

We have “lowered” the i, hence the name b.

In general, the following are identified under the musical isomorphisms:

ZF Xlyeooy X 8X <—>ZF (X1, .., Xxn)dx;.

i=1

For example, F(x,y) = (v, x) would be identified with y dx + xdy.
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Visualising the Musical Isomorphisms

We can visualise b by recalling that v — (u, v) projects v onto u.
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We can visualise b by recalling that v — (u, v) projects v onto u. This
means we want the value of this map to:
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means we want the value of this map to:
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Visualising the Musical Isomorphisms

We can visualise b by recalling that v — (u, v) projects v onto u. This
means we want the value of this map to:

@ change the most if we move parallel to v,

@ stay the same if we move orthogonally to u.

Max Orchard Vector Calculus Without Vectors August 29, 2025

17



Visualising the Musical Isomorphisms

We can visualise b by recalling that v — (u, v) projects v onto u. This
means we want the value of this map to:

@ change the most if we move parallel to v,
@ stay the same if we move orthogonally to u.

This means we want to draw our lines perpendicular to the arrows in the
vector field!
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Visualising the Musical Isomorphisms

We can visualise b by recalling that v — (u, v) projects v onto u. This
means we want the value of this map to:

@ change the most if we move parallel to v,
@ stay the same if we move orthogonally to u.

This means we want to draw our lines perpendicular to the arrows in the
vector field!

F=(1,0)
w = dx
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Visualising the Musical Isomorphisms

We can visualise b by recalling that v — (u, v) projects v onto u. This
means we want the value of this map to:

@ change the most if we move parallel to v,
@ stay the same if we move orthogonally to u.

This means we want to draw our lines perpendicular to the arrows in the
vector field!

/7 ‘y:“k iy

(:: ge

e

F=(1,0) F=(x,y)
w = dx w=xdx+ydy
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Visualising the Musical Isomorphisms

We can visualise b by recalling that v — (u, v) projects v onto u. This
means we want the value of this map to:

@ change the most if we move parallel to v,
@ stay the same if we move orthogonally to u.

This means we want to draw our lines perpendicular to the arrows in the
vector field!

A=

&

7
@)
&=

&

F=(1,0) F=(x,y) F = (cos x sin y, sin x cos y)
w = dx w=xdx+ydy w = cosxsinydx 4 sinxcosydy

.

<M

Max Orchard Vector Calculus Without Vectors August 29, 2025 17



Visualising the Musical Isomorphisms

We can visualise b by recalling that v — (u, v) projects v onto u. This
means we want the value of this map to:

@ change the most if we move parallel to v,
@ stay the same if we move orthogonally to u.

This means we want to draw our lines perpendicular to the arrows in the
vector field!
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90

F=(1,0) F=(x,y) F = (cos x sin y, sin x cos y)
w = dx w=xdx+ydy w = cosxsinydx 4 sinxcosydy

The inverse operator § can be visualised in a similar way.

Max Orchard Vector Calculus Without Vectors August 29, 2025 17



The Gradient

We want to do calculus on forms. But first, let’s look at the first vector
field we learn of that is relevant to calculus.
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The Gradient

We want to do calculus on forms. But first, let’s look at the first vector
field we learn of that is relevant to calculus.

Definition

The gradient of a function f : R” — R is the vector field

n
of _ ; of of
Vf = grad 2 o Ox <6x1’ ’6x”>
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The Gradient

We want to do calculus on forms. But first, let’s look at the first vector
field we learn of that is relevant to calculus.

Definition

The gradient of a function f : R” — R is the vector field

n
of _ ; of of
Vf = grad 2 o Ox <6x1’ ’6x”>

This is a vector field, so can be turned into a 1-form through b. What does
this look like?
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The Gradient

Definition

The exterior derivative of the function f : R” — R is the 1-form

df = (grad f)’ = g dx;.
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The Gradient

Definition

The exterior derivative of the function f : R” — R is the 1-form

df = (grad f)’ = g dx;.

We have
dfy(x) = (grad f(p),x)
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df = (grad f)’ = g dx;.

We have
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The Gradient

Definition

The exterior derivative of the function f : R” — R is the 1-form

df = (grad f)’ = g dx;.

We have
dfy(x) = (grad f(p),x) = £(p) = x(f)(p).

This is the directional derivativel
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The Gradient

Definition
The exterior derivative of the function f : R” — R is the 1-form

df = (grad f)’ = g dx;.

We have
dfy(x) = (grad f(p),x) = £(p) = x(f)(p).

This is the directional derivativel

Remark: MATH1052/1072 says we have to instead dot with the unit
vector X = x/ ||x||. We don't do this, otherwise df wouldn't be linear.
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The Gradient

Recall that grad f is orthogonal to the level sets (contours) of f.
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The Gradient

Recall that grad f is orthogonal to the level sets (contours) of f.

Because b draws lines perpendicular to the vector field, this means that df
is simply a contour plot of f.
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The Gradient

Recall that grad f is orthogonal to the level sets (contours) of f.

Because b draws lines perpendicular to the vector field, this means that df
is simply a contour plot of f.
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The Gradient

Recall that grad f is orthogonal to the level sets (contours) of f.

Because b draws lines perpendicular to the vector field, this means that df
is simply a contour plot of f.
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The Gradient

Recall that grad f is orthogonal to the level sets (contours) of f.

Because b draws lines perpendicular to the vector field, this means that df
is simply a contour plot of f.
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Differentiating a 1-Form

Let's take the derivative of a 1-form! What ingredients do we need?
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Let's take the derivative of a 1-form! What ingredients do we need?

@ Everything needed to evaluate the 1-form, and
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Differentiating a 1-Form

Let's take the derivative of a 1-form! What ingredients do we need?
@ Everything needed to evaluate the 1-form, and

@ A vector that says which direction to take the derivative in.

Max Orchard Vector Calculus Without Vectors August 29, 2025

21



Differentiating a 1-Form

Let's take the derivative of a 1-form! What ingredients do we need?
@ Everything needed to evaluate the 1-form, and

@ A vector that says which direction to take the derivative in.

This means that the derivative of a 1-form will take in two vectors at each
point.
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Differentiating a 1-Form

Let's take the derivative of a 1-form! What ingredients do we need?
@ Everything needed to evaluate the 1-form, and

@ A vector that says which direction to take the derivative in.

This means that the derivative of a 1-form will take in two vectors at each
point.

Enter: the 2-form.
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2-Forms

Definition

A 2-form assigns to each point an alternating bilinear map R” x R" — R.
The space of all 2-forms is denoted Q?(R").
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2-Forms

Definition
A 2-form assigns to each point an alternating bilinear map R” x R" — R.
The space of all 2-forms is denoted Q?(R").

Alternating means wp(u, v) = —wp(v, u).
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2-Forms

Definition

A 2-form assigns to each point an alternating bilinear map R” x R" — R.
The space of all 2-forms is denoted Q?(R").

Alternating means wp(u, v) = —wp(v, u).

Why do we want 2-forms to be alternating?
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2-Forms

Definition

A 2-form assigns to each point an alternating bilinear map R” x R" — R.
The space of all 2-forms is denoted Q?(R").

Alternating means wp(u, v) = —wp(v, u).

Why do we want 2-forms to be alternating?
@ Allows us to keep track of orientation (think u x v = —v X u).
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2-Forms

Definition

A 2-form assigns to each point an alternating bilinear map R” x R" — R.
The space of all 2-forms is denoted Q?(R").

Alternating means wp(u, v) = —wp(v, u).

Why do we want 2-forms to be alternating?
@ Allows us to keep track of orientation (think u x v = —v X u).

o If wy, is bilinear, then w, alternating <= wp(v,v) =0.
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Visualising 2-Forms

1-forms were visualised by seeing how many lines a single vector crossed
(for n = 2).
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Visualising 2-Forms

1-forms were visualised by seeing how many lines a single vector crossed
(for n = 2).

2-forms have two vector inputs, which draw a parallelogram.
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Visualising 2-Forms

1-forms were visualised by seeing how many lines a single vector crossed
(for n = 2).

2-forms have two vector inputs, which draw a parallelogram. Accordingly,

instead of intersecting lines, we count the number of points the
parallelogram contains.
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Visualising 2-Forms

1-forms were visualised by seeing how many lines a single vector crossed
(for n = 2).

2-forms have two vector inputs, which draw a parallelogram. Accordingly,
instead of intersecting lines, we count the number of points the
parallelogram contains.

y

w =dx Ady
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Visualising 2-Forms

1-forms were visualised by seeing how many lines a single vector crossed
(for n = 2).

2-forms have two vector inputs, which draw a parallelogram. Accordingly,
instead of intersecting lines, we count the number of points the
parallelogram contains.

dx A dy(o,0)((1,0), (1,1)) =1
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Visualising 2-Forms

1-forms were visualised by seeing how many lines a single vector crossed
(for n = 2).

2-forms have two vector inputs, which draw a parallelogram. Accordingly,

instead of intersecting lines, we count the number of points the
parallelogram contains.

4

dx A dy(g,0)((2,0), (2,2)) = 4
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Visualising 2-Forms

1-forms were visualised by seeing how many lines a single vector crossed
(for n = 2).

2-forms have two vector inputs, which draw a parallelogram. Accordingly,
instead of intersecting lines, we count the number of points the
parallelogram contains.

y

dx A dy(o,0)((1,0), (1,0)) = 0
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Visualising 2-Forms

1-forms were visualised by seeing how many lines a single vector crossed
(for n = 2).

2-forms have two vector inputs, which draw a parallelogram. Accordingly,
instead of intersecting lines, we count the number of points the
parallelogram contains.

y

w=xdx Ady
w =dx Ady
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Visualising 2-Forms

For n = 3, we draw lines in 3D space.

Max Orchard
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Visualising 2-Forms

For n = 3, we draw lines in 3D space.

w=dx Ady
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Visualising 2-Forms

For n = 3, we draw lines in 3D space.

*
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The Wedge Product

How can we generate 2-forms?
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The Wedge Product

How can we generate 2-forms? One way is the wedge product.
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The Wedge Product

How can we generate 2-forms? One way is the wedge product.

Definition
The wedge product is the operator A : Q1(R") x Q}(R") — Q3(R")
defined by

(@A B)(x1,%2) = ax1) - B(x2) — a(x2) - B(x1)-
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The Wedge Product

How can we generate 2-forms? One way is the wedge product.

Definition
The wedge product is the operator A : Q1(R") x Q}(R") — Q3(R")
defined by

(@A B)(x1,%2) = ax1) - B(x2) — a(x2) - B(x1)-

Note that the definition immediately implies o A o = 0.
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Structure of Q*(R")

We know that Q(R") has a canonical basis given by {dx;}. Is there a
canonical basis for Q2(R")?
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Structure of Q*(R")

We know that Q(R") has a canonical basis given by {dx;}. Is there a
canonical basis for Q2(R")?

It turns out that {dx; A dx;}i<; is a basis for Q>(R"). That is, all 2-forms
can be generated with just the wedge product alone.
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Visualising the Wedge Product

Since the wedge product acts as multiplication, along each line in one
direction, we need to count the number of times we hit lines in the other
directions.
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Visualising the Wedge Product

Since the wedge product acts as multiplication, along each line in one
direction, we need to count the number of times we hit lines in the other
directions.

The wedge product can therefore be seen as the intersection of the lines
drawn by two forms.
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Visualising the Wedge Product

Since the wedge product acts as multiplication, along each line in one
direction, we need to count the number of times we hit lines in the other
directions.

The wedge product can therefore be seen as the intersection of the lines
drawn by two forms.

dx and dy
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Visualising the Wedge Product

Since the wedge product acts as multiplication, along each line in one
direction, we need to count the number of times we hit lines in the other
directions.

The wedge product can therefore be seen as the intersection of the lines
drawn by two forms.

dx and dy dx A dy
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Visualising the Wedge Product

Since the wedge product acts as multiplication, along each line in one
direction, we need to count the number of times we hit lines in the other
directions.

The wedge product can therefore be seen as the intersection of the lines
drawn by two forms.

xdx and dy
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Visualising the Wedge Product

Since the wedge product acts as multiplication, along each line in one
direction, we need to count the number of times we hit lines in the other
directions.

The wedge product can therefore be seen as the intersection of the lines
drawn by two forms.

xdx A dy
xdx and dy
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The Exterior Derivative

We finally have the tools we need to define the derivative of a 1-form.
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k-forms

The Exterior Derivative

We finally have the tools we need to define the derivative of a 1-form.

Definition

The exterior derivative is the map d : QY(R") — Q?(R") given on
multiples of basis forms by

"~ of
d(fdx) = % dx; A dx;
j=t

and extended additively.
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Visualising the Exterior Derivative

Intuitively, if w € Q(R"), then dw(x,y) measures the difference in the
change in w(y) as you move along x and the change in w(x) as you move
along y:

dw(x,y) = x(w(y)) — y(w(x))
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Visualising the Exterior Derivative

Intuitively, if w € Q(R"), then dw(x,y) measures the difference in the
change in w(y) as you move along x and the change in w(x) as you move
along y:

dw(x,y) = x(w(y)) — y(w(x))

The exterior derivative can therefore be seen as the boundary of the lines
drawn by a form.
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Visualising the Exterior Derivative

Intuitively, if w € Q(R"), then dw(x,y) measures the difference in the
change in w(y) as you move along x and the change in w(x) as you move
along y:

dw(x,y) = x(w(y)) — y(w(x))

The exterior derivative can therefore be seen as the boundary of the lines
drawn by a form.
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w = xdy
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Visualising the Exterior Derivative

Intuitively, if w € Q(R"), then dw(x,y) measures the difference in the
change in w(y) as you move along x and the change in w(x) as you move
along y:

dw(x,y) = x(w(y)) — y(w(x))

The exterior derivative can therefore be seen as the boundary of the lines
drawn by a form.
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Visualising the Exterior Derivative

Intuitively, if w € Q(R"), then dw(x,y) measures the difference in the
change in w(y) as you move along x and the change in w(x) as you move
along y:

dw(x,y) = x(w(y)) — y(w(x))

The exterior derivative can therefore be seen as the boundary of the lines
drawn by a form.
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e N

w = xdy dw = dx Ady
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Visualising the Exterior Derivative

Intuitively, if w € Q(R"), then dw(x,y) measures the difference in the
change in w(y) as you move along x and the change in w(x) as you move
along y:

dw(x,y) = x(w(y)) — y(w(x))

The exterior derivative can therefore be seen as the boundary of the lines
drawn by a form.
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w = xdy dw = dx Ady
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Visualising the Exterior Derivative

Intuitively, if w € Q(R"), then dw(x,y) measures the difference in the
change in w(y) as you move along x and the change in w(x) as you move
along y:

dw(x,y) = x(w(y)) — y(w(x))

The exterior derivative can therefore be seen as the boundary of the lines
drawn by a form.

w = xdx
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Visualising the Exterior Derivative
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Visualising the Exterior Derivative

Intuitively, if w € Q(R"), then dw(x,y) measures the difference in the
change in w(y) as you move along x and the change in w(x) as you move
along y:

dw(x,y) = x(w(y)) — y(w(x))

The exterior derivative can therefore be seen as the boundary of the lines
drawn by a form.

w = xdx
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Visualising the Exterior Derivative

Intuitively, if w € Q(R"), then dw(x,y) measures the difference in the
change in w(y) as you move along x and the change in w(x) as you move
along y:

dw(x,y) = x(w(y)) — y(w(x))

The exterior derivative can therefore be seen as the boundary of the lines
drawn by a form.

t L

w = xdx dw=0

Max Orchard Vector Calculus Without Vectors August 29, 2025 31



Visualising the Exterior Derivative

Intuitively, if w € Q(R"), then dw(x,y) measures the difference in the
change in w(y) as you move along x and the change in w(x) as you move
along y:

dw(x,y) = x(w(y)) — y(w(x))

The exterior derivative can therefore be seen as the boundary of the lines
drawn by a form.

w = xdx dw=0
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k-forms

The above constructions can be generalised to k-forms (k-linear
alternating maps R” x - -+ x R"” — R assigned to each point).
—_————

k times
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k-forms

The above constructions can be generalised to k-forms (k-linear
alternating maps R” x - -+ x R"” — R assigned to each point).
—_————

k times

The space of all k-forms is denoted Q*(R").
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k-forms

The above constructions can be generalised to k-forms (k-linear
alternating maps R” x - -+ x R"” — R assigned to each point).
—_————

k times

The space of all k-forms is denoted Q*(R").

The wedge product and exterior derivative extend naturally, though d
satisfies a “graded” product rule

d(w A @) = (dw) Ao+ (1) w A (da),

we QRM), e QYR
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k-forms

The above constructions can be generalised to k-forms (k-linear
alternating maps R” x - -+ x R"” — R assigned to each point).
—_————

k times

The space of all k-forms is denoted Q*(R").

The wedge product and exterior derivative extend naturally, though d
satisfies a “graded” product rule

d(w A @) = (dw) Ao+ (1) w A (da),

we QRM), e QYR

Important fact: by the symmetry of mixed partial derivatives, d(dw) = 0
for all w. This corresponds to the fact that 9(9X) = 0.
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Structure of Q%(R")

As we've come to expect, a basis for QX(R") is given by

{dxi A Adxi by oy -
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Structure of Q%(R")

As we've come to expect, a basis for QX(R") is given by
{dX,'1 VANEEIVA dX;k}

<< "

What happens in Q"F1(R")?
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Structure of Q%(R")

As we've come to expect, a basis for QX(R") is given by

{dX,'1 VANEEIVA dX;k}

<< "

What happens in Q"1(R")? A basis is given by n -+ 1 forms wedged
together.
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Structure of Q%(R")

As we've come to expect, a basis for QX(R") is given by

{dX,'1 VANEEIVA dX;k}

<< "

What happens in Q"1(R")? A basis is given by n -+ 1 forms wedged
together. This means that we must have a repeated dx; somewhere!
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Structure of Q%(R")

As we've come to expect, a basis for QX(R") is given by

{dx; A=+ A dx,-k},.1<m<,.k .
What happens in Q"1(R")? A basis is given by n -+ 1 forms wedged
together. This means that we must have a repeated dx; somewhere! Since
A is alternating, all such wedge products are zero.
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Structure of Q%(R")

As we've come to expect, a basis for QX(R") is given by

{dx; A=+ A dXik}i1<~-~<ik .
What happens in Q"1(R")? A basis is given by n -+ 1 forms wedged
together. This means that we must have a repeated dx; somewhere! Since
A is alternating, all such wedge products are zero. This means:

Proposition

If k > n, then QX(R") = {0}. That is, Q"(R") is the highest order
possible. Moreover, dim(Q2"(R")) = 1.
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Structure of Q%(R")

As we've come to expect, a basis for QX(R") is given by

{dx; A=+ A dXik}i1<~-~<ik .
What happens in Q"1(R")? A basis is given by n -+ 1 forms wedged
together. This means that we must have a repeated dx; somewhere! Since
A is alternating, all such wedge products are zero. This means:

Proposition

If k > n, then QX(R") = {0}. That is, Q"(R") is the highest order
possible. Moreover, dim(Q2"(R")) = 1.

Remark: A scalar field f : R” — R can be thought of as taking in zero
vectors.
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Structure of Q%(R")

As we've come to expect, a basis for QX(R") is given by

{dx; A=+ A dXik}i1<~-~<ik .
What happens in Q"1(R")? A basis is given by n -+ 1 forms wedged
together. This means that we must have a repeated dx; somewhere! Since
A is alternating, all such wedge products are zero. This means:

Proposition

If k > n, then QX(R") = {0}. That is, Q"(R") is the highest order
possible. Moreover, dim(Q2"(R")) = 1.

Remark: A scalar field f : R” — R can be thought of as taking in zero

vectors. Because of this, we say scalar fields are 0-forms, and denote
C>®(R",R) = Q°(R").
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Hodge Star

k-forms can be thought of as “dual” to (n — k)-forms: if you wedge a

k-form and an (n — k)-form, you will get the unique (up to a scalar)
n-form.
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Hodge Star

k-forms can be thought of as “dual” to (n — k)-forms: if you wedge a

k-form and an (n — k)-form, you will get the unique (up to a scalar)
n-form.

Definition

The Hodge star  : QK(R") — Q"~%(R") is the linear operator such that if
w=dx; A---Adx;, then

wA (xw) =dxg A -+ A dxp.
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Hodge Star
k-forms can be thought of as “dual” to (n — k)-forms: if you wedge a

k-form and an (n — k)-form, you will get the unique (up to a scalar)
n-form.

Definition

The Hodge star  : QK(R") — Q"~%(R") is the linear operator such that if
w=dx; A---Adx;, then

wA (xw) =dxg A -+ A dxp.

This provides an isomorphism

QK(R™) «— Q" K(R").
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Hodge Star

k-forms can be thought of as “dual” to (n — k)-forms: if you wedge a

k-form and an (n — k)-form, you will get the unique (up to a scalar)
n-form.

Definition

The Hodge star  : QK(R") — Q"~%(R") is the linear operator such that if
w=dx; A---Adx;, then

wA (xw) =dxg A -+ A dxp.

This provides an isomorphism
QK(R™) «— Q" K(R").
In fact, *(xw) = (—1)K("=Ky,
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Visualising the Hodge Star

The Hodge star “completes” a form to the entire space.
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Visualising the Hodge Star

The Hodge star “completes” a form to the entire space.

The Hodge star can therefore be seen as the orthogonal complement of
the lines drawn by a form.
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Visualising the Hodge Star

The Hodge star “completes” a form to the entire space.

The Hodge star can therefore be seen as the orthogonal complement of
the lines drawn by a form.

w = dx
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Visualising the Hodge Star

The Hodge star “completes” a form to the entire space.

The Hodge star can therefore be seen as the orthogonal complement of
the lines drawn by a form.

w = dx *w = dy
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Visualising the Hodge Star

The Hodge star “completes” a form to the entire space.

The Hodge star can therefore be seen as the orthogonal complement of
the lines drawn by a form.

w = dx *w = dy

The fact that x(xw) = (—1)X("=k)y corresponds to the fact that
(UH)t = U (and U = —V).
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The Current Picture (for R3)

This is the picture we've built up so far for R3:

Max Orchard
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The Current Picture (for R3)

This is the picture we've built up so far for R3:

X(R3?)
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The Current Picture (for R3)

This is the picture we've built up so far for R3:

X(R3)

QY(R%)
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The Current Picture (for R3)

This is the picture we've built up so far for R3:

X(R3)

lb

QY(R%)
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The Current Picture (for R3)

This is the picture we've built up so far for R3:

X(R3)

]

QO(R3) —4 QL(R3) —4 Q2(R3) O3(R3)
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The Current Picture (for R3)

This is the picture we've built up so far for R3:

X(R3)

]

QO(R3) —4 QN(R3) —4 Q2(R3) —4 Q3(R3)
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The Current Picture (for R3)

This is the picture we've built up so far for R3:

X(R3)

)b
QO(R3) —4 QL(R3) —4 Q2(R3) —4 Q3(R3)
~_ 7

*
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The Current Picture (for R3)

This is the picture we've built up so far for R3:

X(R3)

)b

QO(R3) —4 QL(R3) —4 Q2(R3) —4 Q3(R3)

W

*
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The Current Picture (for R3)

This is the picture we've built up so far for R3:

X(R3)

)b
QO(R3) —4 QL(R3) —4 Q2(R3) —4 Q3(R3)
T~

*

Let's do some calculus!
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Standard Vector Operations

Let F € X(IR®), and let's take the exterior derivative of the associated
1-form.
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Standard Vector Operations

Let F € X(IR®), and let's take the exterior derivative of the associated
1-form. That is, let's consider dF’.
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Standard Vector Operations

Let F € X(IR®), and let's take the exterior derivative of the associated
1-form. That is, let's consider dF’. For this example, | will look at

F(x,y,z) = (—y,x,0).

Max Orchard Vector Calculus Without Vectors August 29, 2025

37



Vector Calculus in Forms

Standard Vector Operations

Let F € X(IR®), and let's take the exterior derivative of the associated
1-form. That is, let's consider dF’. For this example, | will look at

F(x,y,z) = (—y,x,0).

| *
\ — — |
| )/)ﬁ*/';—.?:"\/(\’ [ X(®?)
VOIS N
g <= > > | J{
b
(

v K?é?—:_f\f\ o Js §

Q°(r?) ——p QURY) ——p QA(RY) —— Q3(®Y)

L
N K ——— D |
DN ,5;', 7
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Vector Calculus in Forms

Standard Vector Operations

Let F € X(IR®), and let's take the exterior derivative of the associated

1-form. That is, let's consider dF’. For this example, | will look at
F(x,y,z) = (—y,x,0).

X(R%)

I}

QOR3) —— QIR —— Q2(R%) —L— O3(RY)
7

>

FP = —ydx + xdy
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Standard Vector Operations

Let F € X(IR®), and let's take the exterior derivative of the associated

1-form. That is, let's consider dF’. For this example, | will look at
F(x,y,z) = (—y,x,0).
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>
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Vector Calculus in Forms

Standard Vector Operations

Let F € X(IR®), and let's take the exterior derivative of the associated

1-form. That is, let's consider dF’. For this example, | will look at
F(x,y,z) = (—y,x,0).

X(R%)

o
x () —4—p Q(R?) —
w

(R —— O¥(R?)

dF? =2dx A dy
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Standard Vector Operations

Let F € X(IR®), and let's take the exterior derivative of the associated
1-form. That is, let's consider dF’. For this example, | will look at

F(x,y,z) = (—y,x,0).

X(R%)

i

QOR3) —— OI(RY) — > Q2(R%) —L— O3(RY)

~

*(dF?) = 2dz
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Standard Vector Operations

Let F € X(IR®), and let's take the exterior derivative of the associated
1-form. That is, let's consider dF’. For this example, | will look at

F(x,y,z) = (—y,x,0).

X(R%)

i

QOR3) —— OI(RY) — > Q2(R%) —L— O3(RY)

~

*(dF?) = 2dz
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Standard Vector Operations

Let F € X(IR®), and let's take the exterior derivative of the associated
1-form. That is, let's consider dF’. For this example, | will look at

F(x,y,z) = (—y,x,0).

X(R%)

I}

QOR3) —— OI(RY) — > Q2(R%) —L— O3(RY)

~

>

(x(dF*))* = (0,0,2)
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Standard Vector Operations

Let F € X(IR®), and let's take the exterior derivative of the associated
1-form. That is, let's consider dF’. For this example, | will look at

F(x,y,z) = (—y,x,0).

| /"\“‘\“lﬂiF | ,ll“l,‘ |
il | / ﬁ'r‘,fr',’ /
1 1\ \I]H‘\ /I/W X(®)
1 M ARG d {! d d
1 1 f ’ | QO(®?) Ql(RY) 02(R3) > Q3(R%)
| t\t‘ﬂ I — ’
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Vector Calculus in Forms

Curl as an Exterior Derivative

Definition

The curl is the operator curl : X(R3) — X(IR3®) defined by

curl(F) = (x(dF))E.

X(R3)

Il

QO(]RIi) d \ Ql RS) d QZ(R3) d > QS(RS)
<~ _~—
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Vector Calculus in Forms

Curl as an Exterior Derivative

Definition
The curl is the operator curl : X(R3) — X(IR3®) defined by

curl(F) = (x(dF))E.

X(R3)

Il

QO(]RIi) d \ Ql RS) d QZ(R3) d > Q3(R3)
<~ _~—

The *, b, # kind of obscure what's going on: they are just isomorphisms
allowing us to identify one space with another.
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Vector Calculus in Forms

Curl as an Exterior Derivative

Definition
The curl is the operator curl : X(R3) — X(IR3®) defined by

curl(F) = (x(dF))E.

X(R3)

Il

QO(]RIi) d \ Ql RS) d QZ(R3) d > Q3(R3)
<~ _~—

The *, b, # kind of obscure what's going on: they are just isomorphisms
allowing us to identify one space with another. What we're really doing is
differentiating a 1-form and interpreting it as a vector field.
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Vector Calculus in Forms

Divergence as an Exterior Derivative

In a similar way, we can see the divergence as the derivative of a 2-form.
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Vector Calculus in Forms

Divergence as an Exterior Derivative

In a similar way, we can see the divergence as the derivative of a 2-form.

Let's consider F(x,y,z) = (x,y, z).
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Vector Calculus in Forms

Divergence as an Exterior Derivative

In a similar way, we can see the divergence as the derivative of a 2-form.
Let's consider F(x,y,z) = (x,y, z).

N\ 4
I N W\ 4/ g
o A= (@)
BN N
://////// %\%\\j AP
VZaVEN AN
/ i \7\ \J

F=(xy.2)
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Vector Calculus in Forms

Divergence as an Exterior Derivative

In a similar way, we can see the divergence as the derivative of a 2-form.
Let's consider F(x,y,z) = (x,y, z).

X(R3)
Il
QOR3) —— IR —— Q2(R%) —L— O3(R?)
&:/r

F’ = xdx +ydy + zdz
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Vector Calculus in Forms

Divergence as an Exterior Derivative

In a similar way, we can see the divergence as the derivative of a 2-form.
Let's consider F(x,y,z) = (x,y, z).

\ / 3 DR} —L— O'(R) —L— R2F) —L— PR

FP =xdx+ydy + zdz
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Vector Calculus in Forms

Divergence as an Exterior Derivative

In a similar way, we can see the divergence as the derivative of a 2-form.
Let's consider F(x,y,z) = (x,y, z).

*Fb:xdyAdz—ydx/\dz+zdz/\dy
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Vector Calculus in Forms

Divergence as an Exterior Derivative

In a similar way, we can see the divergence as the derivative of a 2-form.
Let's consider F(x,y,z) = (x,y, z).

X(R%)

I}

QR —L—y QIR —L—y QR —L—p O(RY)
~__~

*Fb:xdy/\dz—ydx/\dz+zdz/\dy
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Vector Calculus in Forms

Divergence as an Exterior Derivative

In a similar way, we can see the divergence as the derivative of a 2-form.
Let's consider F(x,y,z) = (x,y, z).

j (R —L 3 QI(R?) —L—p QR — L O(RY)

d(xF?) =3dx A dy Adz
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Vector Calculus in Forms

Divergence as an Exterior Derivative

In a similar way, we can see the divergence as the derivative of a 2-form.
Let's consider F(x,y,z) = (x,y, z).

(
QO(R3) d QYR3 4% Q2(R3) d DB(RY),

X(R3)
I
(R%)

Definition
The divergence is the operator div : X(R3) — C*(R3, R) defined by

div(F) = xd(xF°).
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The Current Picture (for R3)

X(R3)

)b

QO(R3) —4 QN(R3) —4 Q2(R3) —L Q3(R3)

w

*
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The Current Picture (for R3)

QO(R3)

grad
—

X(R3)

)b

QYR3) —4 Q2(R3) —4 Q3(R3)

w

Max Orchard

*
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The Current Picture (for R3)

grad

QR3) ——

x(R3)

)b

QYR3) by Q2(R3) 4, Q3(R3)

w

Max Orchard

*
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The Current Picture (for R3)

x(R3)

)b

QO(R3) 229, Qi(R3) —wl, g2(R3) _div,

w

*

Max Orchard Vector Calculus Without Vectors

Q3(R3)

August 29, 2025

4



The Current Picture (for R3)

x(R3)

)b

QO(R3) 229, QI(R3) —wl, Q2(R3) ¥, Q3(R3)

w

*

We know (MATH2001) that conservative vector fields have zero curl:
V x (Vf)=0.

Prove this fact in two lines using the framework of forms. See if you can
come up with another similar fact.

v

— = = — YO
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Vector Calculus in Forms

Max Orchard

I’m gradient

1'm divergence

vector
e
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Vector Calculus in Forms
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exterior
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Integral Calculus

Integrating Forms

Not only can we differentiate forms, but we can also integrate them (over
a suitable “domain”).
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Integral Calculus

Integrating Forms

Not only can we differentiate forms, but we can also integrate them (over
a suitable “domain”).

If w € QK(R™), we can integrate it over a k-dimensional surface S.
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Integral Calculus

Integrating Forms

Not only can we differentiate forms, but we can also integrate them (over
a suitable “domain”).

If w € QK(R™), we can integrate it over a k-dimensional surface S. To do
this, simply count the number of times S intersects w.
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Integral Calculus

Integrating Forms

Not only can we differentiate forms, but we can also integrate them (over
a suitable “domain”).

If w € QK(R™), we can integrate it over a k-dimensional surface S. To do
this, simply count the number of times S intersects w. In this way, the
integral [sw is a flux integral.
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Integral Calculus

Integrating Forms

Not only can we differentiate forms, but we can also integrate them (over
a suitable “domain”).

If w € QK(R™), we can integrate it over a k-dimensional surface S. To do
this, simply count the number of times S intersects w. In this way, the
integral [sw is a flux integral.

w = dx
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Integral Calculus

Integrating Forms

Not only can we differentiate forms, but we can also integrate them (over
a suitable “domain”).

If w € QK(R™), we can integrate it over a k-dimensional surface S. To do
this, simply count the number of times S intersects w. In this way, the
integral [sw is a flux integral.

[
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Integral Calculus

Fundamental Theorem of Line Integrals

As a warmup, consider a function f : R” — R and the exterior derivative
df.
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Integral Calculus

Fundamental Theorem of Line Integrals

As a warmup, consider a function f : R” — R and the exterior derivative
df. Integrating this over a curve « is the line integral

/df _/ (' (¢ )dt_/Vf-ds.
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Integral Calculus

Fundamental Theorem of Line Integrals

As a warmup, consider a function f : R” — R and the exterior derivative
df. Integrating this over a curve « is the line integral

/df _/ (' (¢ )dt_/Vf-ds.

Recall that df is the contour plot of f, and the line integral counts how
many lines we cross as we traverse 7.
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Integral Calculus

Fundamental Theorem of Line Integrals

As a warmup, consider a function f : R” — R and the exterior derivative
df. Integrating this over a curve « is the line integral

/df _/ (' (¢ )dt_/Vf-ds.

Recall that df is the contour plot of f, and the line integral counts how
many lines we cross as we traverse . That is, the line integral is the net
height gained in traversing the curve.
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Integral Calculus

Fundamental Theorem of Line Integrals

As a warmup, consider a function f : R” — R and the exterior derivative
df. Integrating this over a curve « is the line integral

/df _/ (' (¢ dt_/Vf-ds.
ol

Recall that df is the contour plot of f, and the line integral counts how
many lines we cross as we traverse . That is, the line integral is the net

height gained in traversing the curve. Mathematically, if v : [a, b] — R”,
then

/ af = F((b)) — F((2)).
Y
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Integral Calculus

Fundamental Theorem of Line Integrals

As a warmup, consider a function f : R” — R and the exterior derivative
df. Integrating this over a curve « is the line integral

/df _/ (' (¢ dt_/Vf-ds.
ol

Recall that df is the contour plot of f, and the line integral counts how

many lines we cross as we traverse . That is, the line integral is the net
height gained in traversing the curve. Mathematically, if v : [a, b] — R”,
then

/ af = F((b)) — F((2)).
Y

This is the fundamental theorem of line integrals.
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Integral Calculus

Fundamental Theorem of Line Integrals

Recall that df is the contour plot of f, and the line integral counts how
many lines we cross as we traverse . That is, the line integral is the net

height gained in traversing the curve. Mathematically, if v : [a, b] — R”,
then

/ af = F((b)) — F((2)).

This is the fundamental theorem of line integrals.
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Integral Calculus

Stokes’ Theorem

This statement can be generalised with Stokes’ theorem.
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Integral Calculus

Stokes’ Theorem

This statement can be generalised with Stokes’ theorem.

Theorem (Stokes)

We have (with the correct adjectives for U C R")

Max Orchard Vector Calculus Without Vectors August 29, 2025 46



Integral Calculus

Stokes’ Theorem

This statement can be generalised with Stokes’ theorem.

Theorem (Stokes)

We have (with the correct adjectives for U C R")

/dw:/ w.
U ou

This is actually saying something very trivial: the number of lines that enter

(and don't exit) a region is the number of lines that enter (and don't exit)
a region.
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Integral Calculus

Stokes’ Theorem

This statement can be generalised with Stokes’ theorem.

Theorem (Stokes)

We have (with the correct adjectives for U C R")
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Integral Calculus

Stokes’ Theorem

This statement can be generalised with Stokes’ theorem.

Theorem (Stokes)

We have (with the correct adjectives for U C R")

0 @
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Integral Calculus

The Many Faces of Stokes’ Theorem

Theorem (Stokes)

We have (with the correct adjectives for U C R")

/dw:/ w.
U ou

By varying U and w, we recover many classical vector calculus theorems
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Integral Calculus

The Many Faces of Stokes’ Theorem

Theorem (Stokes)

We have (with the correct adjectives for U C R")

/dw:/ w.
U ou

By varying U and w, we recover many classical vector calculus theorems.

] U \ ou \ w \ dw \ Theorem ‘
[a, b] {a, b} f f'(x) dx FTC
V([a,b]) | {(a)v(B)} | f (VF) FTLI
V) ou we Q! dw Green's theorem
S oS F? curl(F)* |  Stokes' theorem
% ov *F? | xdiv(F) | Divergence theorem
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Further Topics

Some further topics regarding differential forms include:
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Further Topics

Some further topics regarding differential forms include:

@ the exterior calculus on manifolds.
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Further Topics

Some further topics regarding differential forms include:
@ the exterior calculus on manifolds.

@ closed and exact forms and the de Rham cohomology.
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Further Topics

Some further topics regarding differential forms include:
@ the exterior calculus on manifolds.
@ closed and exact forms and the de Rham cohomology.

@ connections and the Yang—Mills equations.
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Integral Calculus

References

For some further reading:

o K. Broder. Lectures on Vector Calculus, available online at
https://www.kylebroder.com/_files/ugd/cb72c5_
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