Vector Calculus Without Vectors

Max Orchard

August 29, 2025

Vector Calculus Without Vectors (what MATH2901 could be, maybe)

Max Orchard

August 29, 2025

MATH2001 looks at, along with other topics, vector calculus.

MATH2001 looks at, along with other topics, *vector calculus*. For example, in MATH2001 you learn about:

MATH2001 looks at, along with other topics, *vector calculus*. For example, in MATH2001 you learn about:

• derivatives of vector fields (divergence, curl),

MATH2001 looks at, along with other topics, *vector calculus*. For example, in MATH2001 you learn about:

- derivatives of vector fields (divergence, curl),
- integrals of vector fields (surface integrals, Stokes' theorem).

MATH2001 looks at, along with other topics, *vector calculus*. For example, in MATH2001 you learn about:

- derivatives of vector fields (divergence, curl),
- integrals of vector fields (surface integrals, Stokes' theorem).

The main objects of interest are *vector fields*, or maps that assign to each point in \mathbb{R}^3 a vector in \mathbb{R}^3 .

MATH2001 looks at, along with other topics, *vector calculus*. For example, in MATH2001 you learn about:

- derivatives of vector fields (divergence, curl),
- integrals of vector fields (surface integrals, Stokes' theorem).

The main objects of interest are *vector fields*, or maps that assign to each point in \mathbb{R}^3 a vector in \mathbb{R}^3 .

I claim that there is an object that is more natural than the vector field for doing vector calculus.

MATH2001 looks at, along with other topics, *vector calculus*. For example, in MATH2001 you learn about:

- derivatives of vector fields (divergence, curl),
- integrals of vector fields (surface integrals, Stokes' theorem).

The main objects of interest are *vector fields*, or maps that assign to each point in \mathbb{R}^3 a vector in \mathbb{R}^3 .

I claim that there is an object that is more natural than the vector field for doing vector calculus.

Since I want to talk about half a semester's worth of content, this talk might take a while.

MATH2001 looks at, along with other topics, *vector calculus*. For example, in MATH2001 you learn about:

- derivatives of vector fields (divergence, curl),
- integrals of vector fields (surface integrals, Stokes' theorem).

The main objects of interest are *vector fields*, or maps that assign to each point in \mathbb{R}^3 a vector in \mathbb{R}^3 .

I claim that there is an object that is more natural than the vector field for doing vector calculus.

Since I want to talk about half a semester's worth of content, this talk might take a while. (Sorry!)

Definition

A vector field is a (smooth) map $F : \mathbb{R}^n \to \mathbb{R}^n$.

Definition

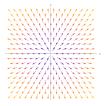
A *vector field* is a (smooth) map $F : \mathbb{R}^n \to \mathbb{R}^n$.

We can visualise vector fields as assigning to each point in \mathbb{R}^n an arrow/vector.

Definition

A *vector field* is a (smooth) map $F : \mathbb{R}^n \to \mathbb{R}^n$.

We can visualise vector fields as assigning to each point in \mathbb{R}^n an arrow/vector.

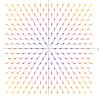


F(x,y) = (x,y)

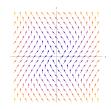
Definition

A *vector field* is a (smooth) map $F : \mathbb{R}^n \to \mathbb{R}^n$.

We can visualise vector fields as assigning to each point in \mathbb{R}^n an arrow/vector.



$$F(x,y)=(x,y)$$

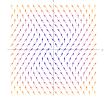


 $F(x, y) = (x^2 - y^2, x^2 + y^2)$

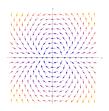
Definition

A *vector field* is a (smooth) map $F : \mathbb{R}^n \to \mathbb{R}^n$.

We can visualise vector fields as assigning to each point in \mathbb{R}^n an arrow/vector.



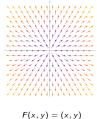
 $F(x, y) = (x^2 - y^2, x^2 + y^2)$ $F(x, y) = (x^2 - y^2 - 4, 2xy)$

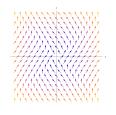


Definition

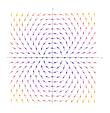
A vector field is a (smooth) map $F: \mathbb{R}^n \to \mathbb{R}^n$.

We can visualise vector fields as assigning to each point in \mathbb{R}^n an arrow/vector.





 $F(x, y) = (x^2 - y^2, x^2 + y^2)$ $F(x, y) = (x^2 - y^2 - 4, 2xy)$



$$F(x, y) = (x^2 - y^2 - 4, 2xy)$$

We will denote the vector space of all vector fields on \mathbb{R}^n as $\mathfrak{X}(\mathbb{R}^n)$.

Question

How do you differentiate a vector field?

Question

How do you differentiate a vector field?

• Single variable functions: derivative

Question

How do you differentiate a vector field?

- Single variable functions: derivative
- Multivariable functions (scalar fields): directional derivative

Question

How do you differentiate a vector field?

- Single variable functions: derivative
- Multivariable functions (scalar fields): directional derivative
- Vector fields: divergence, curl, ... ????

Question

How do you differentiate a vector field?

- Single variable functions: derivative
- Multivariable functions (scalar fields): directional derivative
- Vector fields: divergence, curl, ... ????

Why are there multiple very different ways to differentiate a vector field?

1-Forms

Definition

A *covector* is a linear map $\mathbb{R}^n \to \mathbb{R}$.

1-Forms

Definition

A *covector* is a linear map $\mathbb{R}^n \to \mathbb{R}$.

Definition

A 1-form is a covector field. That is, it is a (smooth) map $\omega: \mathbb{R}^n \to (\mathbb{R}^n \to \mathbb{R})$ that sends $p \in \mathbb{R}^n$ to a covector $\omega_p: \mathbb{R}^n \to \mathbb{R}$.

1-Forms

Definition

A *covector* is a linear map $\mathbb{R}^n \to \mathbb{R}$.

Definition

A 1-form is a covector field. That is, it is a (smooth) map $\omega: \mathbb{R}^n \to (\mathbb{R}^n \to \mathbb{R})$ that sends $p \in \mathbb{R}^n$ to a covector $\omega_p: \mathbb{R}^n \to \mathbb{R}$.

We will denote the set of all 1-forms on \mathbb{R}^n as $\Omega^1(\mathbb{R}^n)$.

Example

 $\omega_{(x,y)}(u,v)=0$ is a 1-form that sends every vector to 0.

Example

 $\omega_{(x,y)}(u,v)=0$ is a 1-form that sends every vector to 0.

Example

 $\omega_{(x,y)}(u,v)=u$ is a 1-form that sends a vector to the value of its x component.

Example

 $\omega_{(x,y)}(u,v)=0$ is a 1-form that sends every vector to 0.

Example

 $\omega_{(x,y)}(u,v)=u$ is a 1-form that sends a vector to the value of its x component. We give this 1-form a special name: dx.

Example

 $\omega_{(x,y)}(u,v)=0$ is a 1-form that sends every vector to 0.

Example

 $\omega_{(x,y)}(u,v)=u$ is a 1-form that sends a vector to the value of its x component. We give this 1-form a special name: dx. For example,

$$dx_{(0,0)}(4,2)=4.$$

Example

 $\omega_{(x,y)}(u,v)=0$ is a 1-form that sends every vector to 0.

Example

 $\omega_{(x,y)}(u,v)=u$ is a 1-form that sends a vector to the value of its x component. We give this 1-form a special name: dx. For example,

$$dx_{(0,0)}(4,2)=4.$$

Similarly, we denote by dy the 1-form that takes a vector to its y component:

$$dy_{(x,v)}(u,v)=v.$$

Example

 $\omega_{(x,y)}(u,v)=xu$ is a 1-form that depends on the point (x,y) we evaluate it at. It is still linear in u and v, though.

Example

 $\omega_{(x,y)}(u,v)=xu$ is a 1-form that depends on the point (x,y) we evaluate it at. It is still linear in u and v, though. For example,

$$\omega_{(1,1)}(1,3) = 1, \quad \omega_{(2,1)}(1,3) = 2.$$

Example

 $\omega_{(x,y)}(u,v)=xu$ is a 1-form that depends on the point (x,y) we evaluate it at. It is still linear in u and v, though. For example,

$$\omega_{(1,1)}(1,3) = 1, \quad \omega_{(2,1)}(1,3) = 2.$$

We can write $\omega = x \, \mathrm{d}x$.

Example

 $\omega_{(x,y)}(u,v)=xu$ is a 1-form that depends on the point (x,y) we evaluate it at. It is still linear in u and v, though. For example,

$$\omega_{(1,1)}(1,3) = 1, \quad \omega_{(2,1)}(1,3) = 2.$$

We can write $\omega = x \, \mathrm{d}x$.

Example

 $\omega_{(x,y)}(u,v)=y^2u+2x^2v$ is a 1-form (that is linear in u and v, but not in x and y).

Example

 $\omega_{(x,y)}(u,v)=xu$ is a 1-form that depends on the point (x,y) we evaluate it at. It is still linear in u and v, though. For example,

$$\omega_{(1,1)}(1,3) = 1, \quad \omega_{(2,1)}(1,3) = 2.$$

We can write $\omega = x \, \mathrm{d}x$.

Example

 $\omega_{(x,y)}(u,v) = y^2u + 2x^2v$ is a 1-form (that is linear in u and v, but not in x and y). Here, $\omega = y^2 dx + 2x^2 dy$.

Example

 $\omega_{(x,y)}(u,v) = uv$ is not a 1-form, as it is not linear in u and v.

Example

 $\omega_{(x,y)}(u,v)=uv$ is *not* a 1-form, as it is not linear in u and v. For example,

$$\omega_{(0,0)}(1,1)=1,$$

but

$$\omega_{(0,0)}(2,2) = 4 \neq 2 \cdot \omega_{(0,0)}(1,1).$$

Examples of 1-Forms

Example

 $\omega_{(x,y)}(u,v) = uv$ is *not* a 1-form, as it is not linear in u and v. For example,

$$\omega_{(0,0)}(1,1)=1,$$

but

$$\omega_{(0,0)}(2,2) = 4 \neq 2 \cdot \omega_{(0,0)}(1,1).$$

In general, we cannot multiply 1-forms together and get another 1-form.

Structure of $\mathfrak{X}(\mathbb{R}^n)$ and $\Omega^1(\mathbb{R}^n)$

The spaces $\mathfrak{X}(\mathbb{R}^n)$ and $\Omega^1(\mathbb{R}^n)$ are both vector spaces (with pointwise addition and scalar multiplication):

$$(F+G)(\mathbf{x})=F(\mathbf{x})+G(\mathbf{x}), \quad (c\cdot F)(\mathbf{x})=c\cdot F(\mathbf{x}),$$

$$(\omega + \rho)_p(\mathbf{x}) = \omega_p(\mathbf{x}) + \rho_p(\mathbf{x}), \quad (c \cdot \omega)_p(\mathbf{x}) = c \cdot \omega_p(\mathbf{x}).$$

Structure of $\mathfrak{X}(\mathbb{R}^n)$ and $\Omega^1(\mathbb{R}^n)$

The spaces $\mathfrak{X}(\mathbb{R}^n)$ and $\Omega^1(\mathbb{R}^n)$ are both vector spaces (with pointwise addition and scalar multiplication):

$$(F+G)(\mathbf{x}) = F(\mathbf{x}) + G(\mathbf{x}), \quad (c \cdot F)(\mathbf{x}) = c \cdot F(\mathbf{x}),$$
$$(\omega + \rho)_p(\mathbf{x}) = \omega_p(\mathbf{x}) + \rho_p(\mathbf{x}), \quad (c \cdot \omega)_p(\mathbf{x}) = c \cdot \omega_p(\mathbf{x}).$$

Both vector spaces are *n*-dimensional, with bases

$$\{\partial x^1, \dots, \partial x^n\}$$
 for $\mathfrak{X}(\mathbb{R}^n)$, $\{\mathrm{d} x_1, \dots, \mathrm{d} x_n\}$ for $\Omega^1(\mathbb{R}^n)$,

where $\partial x^i(\mathbf{x}) = e^i = (0, \dots, \underbrace{1}_{i^{th} \text{ spot}}, \dots, 0).$

Structure of $\mathfrak{X}(\mathbb{R}^n)$ and $\Omega^1(\mathbb{R}^n)$

The spaces $\mathfrak{X}(\mathbb{R}^n)$ and $\Omega^1(\mathbb{R}^n)$ are both vector spaces (with pointwise addition and scalar multiplication):

$$(F+G)(\mathbf{x}) = F(\mathbf{x}) + G(\mathbf{x}), \quad (c \cdot F)(\mathbf{x}) = c \cdot F(\mathbf{x}),$$
$$(\omega + \rho)_p(\mathbf{x}) = \omega_p(\mathbf{x}) + \rho_p(\mathbf{x}), \quad (c \cdot \omega)_p(\mathbf{x}) = c \cdot \omega_p(\mathbf{x}).$$

Both vector spaces are *n*-dimensional, with bases

$$\{\partial x^1,\dots,\partial x^n\}$$
 for $\mathfrak{X}(\mathbb{R}^n),$ $\{\mathrm{d} x_1,\dots,\mathrm{d} x_n\}$ for $\Omega^1(\mathbb{R}^n),$ where $\partial x^i(\mathbf{x})=e^i=(0,\dots,\underbrace{1}_{},\dots,0).$

where $\partial x^i(\mathbf{x}) = e^i = (0, \dots, \underbrace{1}_{i^{\mathsf{th}} \mathsf{spot}}, \dots, 0).$

Careful: the coefficients are functions $F_i(x_1, ..., x_n)$, not just scalars!

An advantage of using vector fields is how easy it is to visualise them.

An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end we get a scalar!

An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what value a vector is assigned, simply draw the vector and count the number of lines it crosses.

An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what value a vector is assigned, simply draw the vector and count the number of lines it crosses.

An advantage of using vector fields is how easy it is to visualise them.

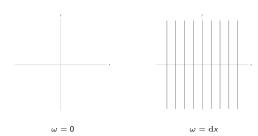
How do we visualise 1-forms? There are lots of parameters, and at the end we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what value a vector is assigned, simply draw the vector and count the number of lines it crosses.

An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end we get a scalar!

One away to do this (for n=2) is to draw lines in the plane. To see what value a vector is assigned, simply draw the vector and count the number of lines it crosses.



An advantage of using vector fields is how easy it is to visualise them.

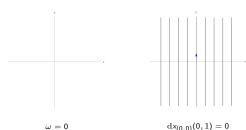
How do we visualise 1-forms? There are lots of parameters, and at the end we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what value a vector is assigned, simply draw the vector and count the number of lines it crosses.

An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end we get a scalar!

One away to do this (for n=2) is to draw lines in the plane. To see what value a vector is assigned, simply draw the vector and count the number of lines it crosses.



Vector Calculus Without Vectors

11

An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end we get a scalar!

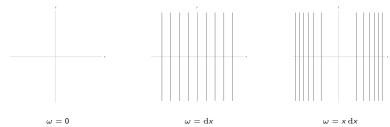
One away to do this (for n=2) is to draw lines in the plane. To see what value a vector is assigned, simply draw the vector and count the number of lines it crosses.

 $dx_{(0,0)}(2,1)=2$

An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end we get a scalar!

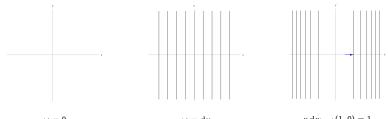
One away to do this (for n=2) is to draw lines in the plane. To see what value a vector is assigned, simply draw the vector and count the number of lines it crosses.



An advantage of using vector fields is how easy it is to visualise them.

How do we visualise 1-forms? There are lots of parameters, and at the end we get a scalar!

One away to do this (for n = 2) is to draw lines in the plane. To see what value a vector is assigned, simply draw the vector and count the number of lines it crosses.



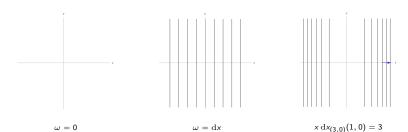
 $\omega = \mathrm{d}x$

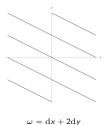
 $x \, \mathrm{d}x_{(1,0)}(1,0) = 1$

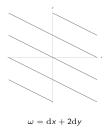
An advantage of using vector fields is how easy it is to visualise them.

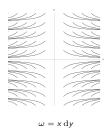
How do we visualise 1-forms? There are lots of parameters, and at the end we get a scalar!

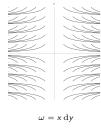
One away to do this (for n=2) is to draw lines in the plane. To see what value a vector is assigned, simply draw the vector and count the number of lines it crosses.

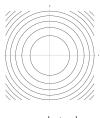






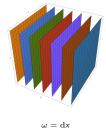






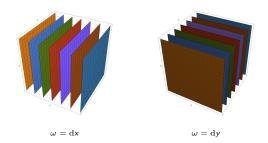
For n = 3, we instead draw planes in 3D space. To see what value a vector is assigned, count the number of planes it crosses.

For n = 3, we instead draw planes in 3D space. To see what value a vector is assigned, count the number of planes it crosses.

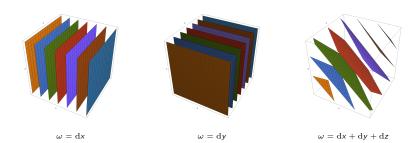


◆ロト ◆部ト ◆注ト ◆注ト 注 り < ○</p>

For n=3, we instead draw planes in 3D space. To see what value a vector is assigned, count the number of planes it crosses.



For n=3, we instead draw planes in 3D space. To see what value a vector is assigned, count the number of planes it crosses.



We want to do *vector* calculus on 1-forms, so we need a way to translate between the languages of vector fields and 1-forms.

We want to do *vector* calculus on 1-forms, so we need a way to translate between the languages of vector fields and 1-forms.

Luckily for us, \mathbb{R}^n is already equipped with a tool that allows us to go from vectors to scalars:

We want to do *vector* calculus on 1-forms, so we need a way to translate between the languages of vector fields and 1-forms.

Luckily for us, \mathbb{R}^n is already equipped with a tool that allows us to go from vectors to scalars: the *dot product* $\langle \cdot, \cdot \rangle$.

We want to do *vector* calculus on 1-forms, so we need a way to translate between the languages of vector fields and 1-forms.

Luckily for us, \mathbb{R}^n is already equipped with a tool that allows us to go from vectors to scalars: the *dot product* $\langle \cdot, \cdot \rangle$.

In particular, let $F \in \mathfrak{X}(\mathbb{R}^n)$ be a vector field. We can define a 1-form $\omega \in \Omega^1(\mathbb{R}^n)$ by

$$\omega_p(\mathbf{x}) = \langle F(p), \mathbf{x} \rangle$$
.

We want to do *vector* calculus on 1-forms, so we need a way to translate between the languages of vector fields and 1-forms.

Luckily for us, \mathbb{R}^n is already equipped with a tool that allows us to go from vectors to scalars: the *dot product* $\langle \cdot, \cdot \rangle$.

In particular, let $F\in\mathfrak{X}(\mathbb{R}^n)$ be a vector field. We can define a 1-form $\omega\in\Omega^1(\mathbb{R}^n)$ by

$$\omega_p(\mathbf{x}) = \langle F(p), \mathbf{x} \rangle$$
.

Because the dot product is non-degenerate, this map is injective!

We want to do *vector* calculus on 1-forms, so we need a way to translate between the languages of vector fields and 1-forms.

Luckily for us, \mathbb{R}^n is already equipped with a tool that allows us to go from vectors to scalars: the *dot product* $\langle \cdot, \cdot \rangle$.

In particular, let $F\in\mathfrak{X}(\mathbb{R}^n)$ be a vector field. We can define a 1-form $\omega\in\Omega^1(\mathbb{R}^n)$ by

$$\omega_p(\mathbf{x}) = \langle F(p), \mathbf{x} \rangle$$
.

Because the dot product is non-degenerate, this map is injective! Therefore, it is an isomorphism (since it is a linear map) and has an inverse.

Definition

The *flat operator* $\flat:\mathfrak{X}(\mathbb{R}^n)\to\Omega^1(\mathbb{R}^n)$ is defined by

$$(F^{\flat})_{\rho}(\mathbf{x}) = \langle F(\rho), \mathbf{x} \rangle$$
.

Definition

The *flat operator* $\flat:\mathfrak{X}(\mathbb{R}^n)\to\Omega^1(\mathbb{R}^n)$ is defined by

$$(F^{\flat})_{p}(\mathbf{x}) = \langle F(p), \mathbf{x} \rangle$$
.

The sharp operator $\sharp:\Omega^1(\mathbb{R}^n)\to\mathfrak{X}(\mathbb{R}^n)$ is defined by

$$\langle \omega^{\sharp}(\mathbf{p}), \mathbf{x} \rangle = \omega_{\mathbf{p}}(\mathbf{x}).$$

Definition

The *flat operator* $\flat:\mathfrak{X}(\mathbb{R}^n)\to\Omega^1(\mathbb{R}^n)$ is defined by

$$(F^{\flat})_{\rho}(\mathbf{x}) = \langle F(\rho), \mathbf{x} \rangle$$
.

The sharp operator $\sharp:\Omega^1(\mathbb{R}^n)\to\mathfrak{X}(\mathbb{R}^n)$ is defined by

$$\langle \omega^{\sharp}(p), \mathbf{x} \rangle = \omega_{p}(\mathbf{x}).$$

Together, these operators are called the *musical isomorphisms*.

Definition

The *flat operator* $\flat:\mathfrak{X}(\mathbb{R}^n)\to\Omega^1(\mathbb{R}^n)$ is defined by

$$(F^{\flat})_{p}(\mathbf{x}) = \langle F(p), \mathbf{x} \rangle$$
.

The sharp operator $\sharp:\Omega^1(\mathbb{R}^n)\to\mathfrak{X}(\mathbb{R}^n)$ is defined by

$$\langle \omega^{\sharp}(p), \mathbf{x} \rangle = \omega_{p}(\mathbf{x}).$$

Together, these operators are called the *musical isomorphisms*.

The musical isomorphisms give a one-to-one correspondence

$$\mathfrak{X}(\mathbb{R}^n) \longleftrightarrow \Omega^1(\mathbb{R}^n).$$

Example

Recall that $\partial x^i(\mathbf{x}) = e^i$.

Example

Recall that $\partial x^i(\mathbf{x}) = e^i$. We have

$$(\partial x^i)^{\flat}_{p}(\mathbf{x}) = \langle e^i, \mathbf{x} \rangle = (\mathrm{d} x_i)_{p}(\mathbf{x}).$$

Vector Field ↔ 1-Form Correspondence

Example

Recall that $\partial x^i(\mathbf{x}) = e^i$. We have

$$(\partial x^i)^{\flat}_{\rho}(\mathbf{x}) = \langle e^i, \mathbf{x} \rangle = (\mathrm{d}x_i)_{\rho}(\mathbf{x}).$$

We have "lowered" the i, hence the name \flat .

Vector Field ↔ 1-Form Correspondence

Example

Recall that $\partial x^i(\mathbf{x}) = e^i$. We have

$$(\partial x^i)_p^{\flat}(\mathbf{x}) = \langle e^i, \mathbf{x} \rangle = (\mathrm{d} x_i)_p(\mathbf{x}).$$

We have "lowered" the i, hence the name \flat .

In general, the following are identified under the musical isomorphisms:

$$\sum_{i=1}^n F_i(x_1,\ldots,x_n) \, \partial x^i \longleftrightarrow \sum_{i=1}^n F_i(x_1,\ldots,x_n) \, \mathrm{d} x_i.$$

Vector Field ↔ 1-Form Correspondence

Example

Recall that $\partial x^i(\mathbf{x}) = e^i$. We have

$$(\partial x^i)_p^{\flat}(\mathbf{x}) = \langle e^i, \mathbf{x} \rangle = (\mathrm{d} x_i)_p(\mathbf{x}).$$

We have "lowered" the i, hence the name \flat .

In general, the following are identified under the musical isomorphisms:

$$\sum_{i=1}^n F_i(x_1,\ldots,x_n) \, \partial x^i \longleftrightarrow \sum_{i=1}^n F_i(x_1,\ldots,x_n) \, \mathrm{d} x_i.$$

For example, F(x, y) = (y, x) would be identified with y dx + x dy.

We can visualise \flat by recalling that $v \mapsto \langle u, v \rangle$ projects v onto u.

We can visualise \flat by recalling that $v \mapsto \langle u, v \rangle$ projects v onto u. This means we want the value of this map to:

We can visualise \flat by recalling that $v \mapsto \langle u, v \rangle$ projects v onto u. This means we want the value of this map to:

• change the most if we move parallel to u,

We can visualise \flat by recalling that $v \mapsto \langle u, v \rangle$ projects v onto u. This means we want the value of this map to:

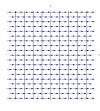
- change the most if we move parallel to u,
- stay the same if we move orthogonally to u.

We can visualise \flat by recalling that $v \mapsto \langle u, v \rangle$ projects v onto u. This means we want the value of this map to:

- change the most if we move parallel to u,
- ullet stay the same if we move orthogonally to u.

We can visualise \flat by recalling that $v \mapsto \langle u, v \rangle$ projects v onto u. This means we want the value of this map to:

- change the most if we move parallel to u,
- ullet stay the same if we move orthogonally to u.

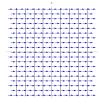


$$F = (1, 0)$$

 $\omega = dx$

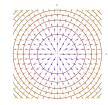
We can visualise \flat by recalling that $v \mapsto \langle u, v \rangle$ projects v onto u. This means we want the value of this map to:

- change the most if we move parallel to u,
- stay the same if we move orthogonally to u.



$$F = (1, 0)$$

 $\omega = dx$

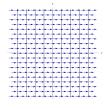


$$F = (x, y)$$

$$\omega = x \, dx + y \, dy$$

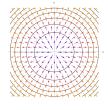
We can visualise \flat by recalling that $v \mapsto \langle u, v \rangle$ projects v onto u. This means we want the value of this map to:

- change the most if we move parallel to u,
- stay the same if we move orthogonally to u.



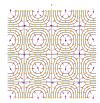
$$F = (1, 0)$$

 $\omega = dx$



$$F = (x, y)$$

$$\omega = x \, dx + y \, dy$$



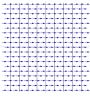
$$F = (\cos x \sin y, \sin x \cos y)$$

$$\omega = \cos x \sin y \, dx + \sin x \cos y \, dy$$

We can visualise \flat by recalling that $v \mapsto \langle u, v \rangle$ projects v onto u. This means we want the value of this map to:

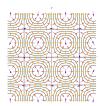
- change the most if we move parallel to u,
- stay the same if we move orthogonally to u.

This means we want to draw our lines *perpendicular* to the arrows in the vector field!



$$F = (x, y)$$

$$\omega = x \, dx + y \, dy$$



$$F = (\cos x \sin y, \sin x \cos y)$$

$$\omega = \cos x \sin y \, dx + \sin x \cos y \, dy$$

The inverse operator \sharp can be visualised in a similar way.

We want to do calculus on forms. But first, let's look at the first vector field we learn of that is relevant to calculus.

We want to do calculus on forms. But first, let's look at the first vector field we learn of that is relevant to calculus.

Definition

The *gradient* of a function $f: \mathbb{R}^n \to \mathbb{R}$ is the vector field

$$\nabla f = \operatorname{grad} f = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} \partial x^{i} = \left(\frac{\partial f}{\partial x^{1}}, \dots, \frac{\partial f}{\partial x^{n}}\right).$$

We want to do calculus on forms. But first, let's look at the first vector field we learn of that is relevant to calculus.

Definition

The *gradient* of a function $f: \mathbb{R}^n \to \mathbb{R}$ is the vector field

$$\nabla f = \operatorname{grad} f = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} \partial x^{i} = \left(\frac{\partial f}{\partial x^{1}}, \dots, \frac{\partial f}{\partial x^{n}}\right).$$

This is a vector field, so can be turned into a 1-form through \flat . What does this look like?

Definition

The *exterior derivative* of the function $f: \mathbb{R}^n \to \mathbb{R}$ is the 1-form

$$\mathrm{d} f = (\mathrm{grad}\ f)^{\flat} = \sum_{i=1}^n \frac{\partial f}{\partial x^i}\,\mathrm{d} x_i.$$

Definition

The *exterior derivative* of the function $f: \mathbb{R}^n \to \mathbb{R}$ is the 1-form

$$\mathrm{d}f = (\mathrm{grad}\ f)^{\flat} = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} \, \mathrm{d}x_{i}.$$

We have

$$\mathrm{d}f_p(\mathbf{x}) = \langle \mathrm{grad}\ f(p), \mathbf{x} \rangle$$

Definition

The *exterior derivative* of the function $f: \mathbb{R}^n \to \mathbb{R}$ is the 1-form

$$\mathrm{d}f = (\mathrm{grad}\ f)^{\flat} = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} \, \mathrm{d}x_{i}.$$

We have

$$\mathrm{d}f_p(\mathbf{x}) = \langle \mathrm{grad}\ f(p), \mathbf{x} \rangle = f_{\mathbf{x}}(p)$$

Definition

The *exterior derivative* of the function $f: \mathbb{R}^n \to \mathbb{R}$ is the 1-form

$$\mathrm{d}f = (\mathrm{grad}\ f)^{\flat} = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} \, \mathrm{d}x_{i}.$$

We have

$$\mathrm{d} f_p(\mathbf{x}) = \langle \mathrm{grad} \ f(p), \mathbf{x} \rangle = f_{\mathbf{x}}(p) = \mathbf{x}(f)(p).$$

Definition

The *exterior derivative* of the function $f: \mathbb{R}^n \to \mathbb{R}$ is the 1-form

$$\mathrm{d}f = (\mathrm{grad}\ f)^{\flat} = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} \, \mathrm{d}x_{i}.$$

We have

$$\mathrm{d}f_p(\mathbf{x}) = \langle \mathrm{grad}\ f(p), \mathbf{x} \rangle = f_{\mathbf{x}}(p) = \mathbf{x}(f)(p).$$

This is the directional derivative!

Definition

The *exterior derivative* of the function $f: \mathbb{R}^n \to \mathbb{R}$ is the 1-form

$$\mathrm{d}f = (\mathrm{grad}\ f)^{\flat} = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} \, \mathrm{d}x_{i}.$$

We have

$$\mathrm{d}f_p(\mathbf{x}) = \langle \mathrm{grad}\ f(p), \mathbf{x} \rangle = f_{\mathbf{x}}(p) = \mathbf{x}(f)(p).$$

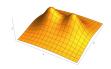
This is the directional derivative!

Remark: MATH1052/1072 says we have to instead dot with the unit vector $\hat{\mathbf{x}} = \mathbf{x}/\|\mathbf{x}\|$. We don't do this, otherwise $\mathrm{d}f$ wouldn't be linear.

Recall that grad f is orthogonal to the level sets (contours) of f.

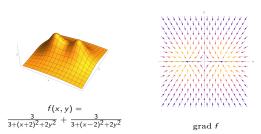
Recall that $\operatorname{grad} f$ is orthogonal to the level sets (contours) of f.

Recall that $\operatorname{grad} f$ is orthogonal to the level sets (contours) of f.

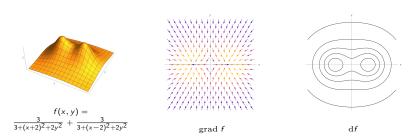


$$f(x,y) = \frac{3}{3+(y+2)^2+2y^2} + \frac{3}{3+(y-2)^2+2y^2}$$

Recall that $\operatorname{grad} f$ is orthogonal to the level sets (contours) of f.



Recall that $\operatorname{grad} f$ is orthogonal to the level sets (contours) of f.



Let's take the derivative of a 1-form! What ingredients do we need?

Let's take the derivative of a 1-form! What ingredients do we need?

• Everything needed to evaluate the 1-form, and

Let's take the derivative of a 1-form! What ingredients do we need?

- Everything needed to evaluate the 1-form, and
- A vector that says which direction to take the derivative in.

Let's take the derivative of a 1-form! What ingredients do we need?

- Everything needed to evaluate the 1-form, and
- A vector that says which direction to take the derivative in.

This means that the derivative of a 1-form will take in *two* vectors at each point.

Let's take the derivative of a 1-form! What ingredients do we need?

- Everything needed to evaluate the 1-form, and
- A vector that says which direction to take the derivative in.

This means that the derivative of a 1-form will take in *two* vectors at each point.

Enter: the 2-form.

Definition

A 2-form assigns to each point an alternating bilinear map $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$. The space of all 2-forms is denoted $\Omega^2(\mathbb{R}^n)$.

Definition

A 2-form assigns to each point an alternating bilinear map $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$. The space of all 2-forms is denoted $\Omega^2(\mathbb{R}^n)$.

Alternating means $\omega_p(u, v) = -\omega_p(v, u)$.

Definition

A 2-form assigns to each point an alternating bilinear map $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$. The space of all 2-forms is denoted $\Omega^2(\mathbb{R}^n)$.

Alternating means $\omega_p(u, v) = -\omega_p(v, u)$.

Why do we want 2-forms to be alternating?

Definition

A 2-form assigns to each point an alternating bilinear map $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$. The space of all 2-forms is denoted $\Omega^2(\mathbb{R}^n)$.

Alternating means $\omega_p(u, v) = -\omega_p(v, u)$.

Why do we want 2-forms to be alternating?

• Allows us to keep track of orientation (think $u \times v = -v \times u$).

Definition

A 2-form assigns to each point an alternating bilinear map $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$. The space of all 2-forms is denoted $\Omega^2(\mathbb{R}^n)$.

Alternating means $\omega_p(u, v) = -\omega_p(v, u)$.

Why do we want 2-forms to be alternating?

- Allows us to keep track of orientation (think $u \times v = -v \times u$).
- If ω_p is bilinear, then ω_p alternating $\iff \omega_p(v,v) = 0$.

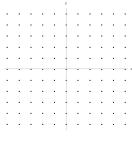
1-forms were visualised by seeing how many lines a single vector crossed (for n = 2).

1-forms were visualised by seeing how many lines a single vector crossed (for n = 2).

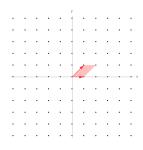
2-forms have two vector inputs, which draw a parallelogram.

1-forms were visualised by seeing how many lines a single vector crossed (for n = 2).

1-forms were visualised by seeing how many lines a single vector crossed (for n = 2).

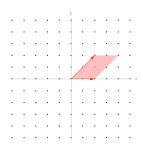


1-forms were visualised by seeing how many lines a single vector crossed (for n = 2).



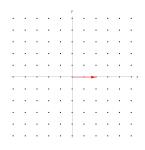
$$dx \wedge dy_{(0,0)}((1,0),(1,1)) = 1$$

1-forms were visualised by seeing how many lines a single vector crossed (for n = 2).



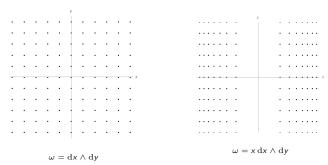
$$dx \wedge dy_{(0,0)}((2,0),(2,2)) = 4$$

1-forms were visualised by seeing how many lines a single vector crossed (for n = 2).



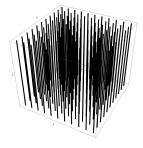
$$dx \wedge dy_{(0,0)}((1,0),(1,0)) = 0$$

1-forms were visualised by seeing how many lines a single vector crossed (for n = 2).



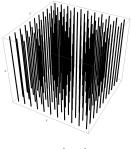
For n = 3, we draw lines in 3D space.

For n = 3, we draw lines in 3D space.



 $\omega=\mathrm{d}x\wedge\mathrm{d}y$

For n = 3, we draw lines in 3D space.



 $\omega = \mathrm{d} x \wedge \mathrm{d} y$

 $\omega = dy \wedge dz$

How can we generate 2-forms?

How can we generate 2-forms? One way is the wedge product.

How can we generate 2-forms? One way is the wedge product.

Definition

The wedge product is the operator $\wedge: \Omega^1(\mathbb{R}^n) \times \Omega^1(\mathbb{R}^n) \to \Omega^2(\mathbb{R}^n)$ defined by

$$(\alpha \wedge \beta)(\mathbf{x}_1, \mathbf{x}_2) = \alpha(\mathbf{x}_1) \cdot \beta(\mathbf{x}_2) - \alpha(\mathbf{x}_2) \cdot \beta(\mathbf{x}_1).$$

How can we generate 2-forms? One way is the wedge product.

Definition

The wedge product is the operator $\wedge: \Omega^1(\mathbb{R}^n) \times \Omega^1(\mathbb{R}^n) \to \Omega^2(\mathbb{R}^n)$ defined by

$$(\alpha \wedge \beta)(\mathbf{x}_1, \mathbf{x}_2) = \alpha(\mathbf{x}_1) \cdot \beta(\mathbf{x}_2) - \alpha(\mathbf{x}_2) \cdot \beta(\mathbf{x}_1).$$

Note that the definition immediately implies $\alpha \wedge \alpha = 0$.

Structure of $\Omega^2(\mathbb{R}^n)$

We know that $\Omega^1(\mathbb{R}^n)$ has a canonical basis given by $\{dx_i\}$. Is there a canonical basis for $\Omega^2(\mathbb{R}^n)$?

Structure of $\Omega^2(\mathbb{R}^n)$

We know that $\Omega^1(\mathbb{R}^n)$ has a canonical basis given by $\{dx_i\}$. Is there a canonical basis for $\Omega^2(\mathbb{R}^n)$?

It turns out that $\{dx_i \wedge dx_j\}_{i < j}$ is a basis for $\Omega^2(\mathbb{R}^n)$. That is, all 2-forms can be generated with just the wedge product alone.

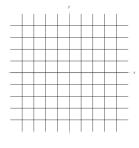
Since the wedge product acts as multiplication, along each line in one direction, we need to count the number of times we hit lines in the other directions.

Since the wedge product acts as multiplication, along each line in one direction, we need to count the number of times we hit lines in the other directions.

The wedge product can therefore be seen as the *intersection* of the lines drawn by two forms.

Since the wedge product acts as multiplication, along each line in one direction, we need to count the number of times we hit lines in the other directions.

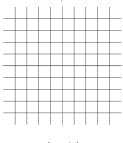
The wedge product can therefore be seen as the *intersection* of the lines drawn by two forms.

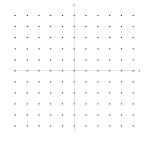


dx and dy

Since the wedge product acts as multiplication, along each line in one direction, we need to count the number of times we hit lines in the other directions.

The wedge product can therefore be seen as the *intersection* of the lines drawn by two forms.

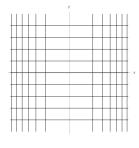




dx and dy $dx \wedge dy$

Since the wedge product acts as multiplication, along each line in one direction, we need to count the number of times we hit lines in the other directions.

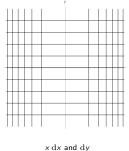
The wedge product can therefore be seen as the *intersection* of the lines drawn by two forms.

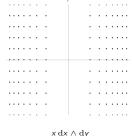


x dx and dy

Since the wedge product acts as multiplication, along each line in one direction, we need to count the number of times we hit lines in the other directions.

The wedge product can therefore be seen as the *intersection* of the lines drawn by two forms.





nd dv

The Exterior Derivative

We finally have the tools we need to define the derivative of a 1-form.

The Exterior Derivative

We finally have the tools we need to define the derivative of a 1-form.

Definition

The *exterior derivative* is the map $d: \Omega^1(\mathbb{R}^n) \to \Omega^2(\mathbb{R}^n)$ given on multiples of basis forms by

$$d(f dx_i) = \sum_{i=1}^n \frac{\partial f}{\partial x_i} dx_j \wedge dx_i$$

and extended additively.

Intuitively, if $\omega \in \Omega^1(\mathbb{R}^n)$, then $d\omega(\mathbf{x}, \mathbf{y})$ measures the *difference* in the change in $\omega(\mathbf{y})$ as you move along \mathbf{x} and the change in $\omega(\mathbf{x})$ as you move along \mathbf{y} :

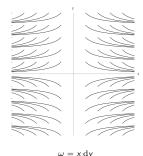
$$d\omega(\mathbf{x}, \mathbf{y}) = \mathbf{x}(\omega(\mathbf{y})) - \mathbf{y}(\omega(\mathbf{x}))$$
 (for constant \mathbf{x}, \mathbf{y}).

Intuitively, if $\omega \in \Omega^1(\mathbb{R}^n)$, then $d\omega(\mathbf{x}, \mathbf{y})$ measures the *difference* in the change in $\omega(\mathbf{y})$ as you move along \mathbf{x} and the change in $\omega(\mathbf{x})$ as you move along \mathbf{y} :

$$d\omega(\mathbf{x}, \mathbf{y}) = \mathbf{x}(\omega(\mathbf{y})) - \mathbf{y}(\omega(\mathbf{x}))$$
 (for constant \mathbf{x}, \mathbf{y}).

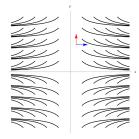
Intuitively, if $\omega \in \Omega^1(\mathbb{R}^n)$, then $d\omega(\mathbf{x}, \mathbf{y})$ measures the *difference* in the change in $\omega(\mathbf{y})$ as you move along \mathbf{x} and the change in $\omega(\mathbf{x})$ as you move along \mathbf{y} :

$$d\omega(\mathbf{x}, \mathbf{y}) = \mathbf{x}(\omega(\mathbf{y})) - \mathbf{y}(\omega(\mathbf{x}))$$
 (for constant \mathbf{x}, \mathbf{y}).



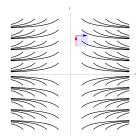
Intuitively, if $\omega \in \Omega^1(\mathbb{R}^n)$, then $d\omega(\mathbf{x}, \mathbf{y})$ measures the *difference* in the change in $\omega(\mathbf{y})$ as you move along \mathbf{x} and the change in $\omega(\mathbf{x})$ as you move along \mathbf{y} :

$$d\omega(\mathbf{x}, \mathbf{y}) = \mathbf{x}(\omega(\mathbf{y})) - \mathbf{y}(\omega(\mathbf{x}))$$
 (for constant \mathbf{x}, \mathbf{y}).



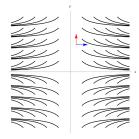
Intuitively, if $\omega \in \Omega^1(\mathbb{R}^n)$, then $d\omega(\mathbf{x}, \mathbf{y})$ measures the *difference* in the change in $\omega(\mathbf{y})$ as you move along \mathbf{x} and the change in $\omega(\mathbf{x})$ as you move along \mathbf{y} :

$$d\omega(\mathbf{x}, \mathbf{y}) = \mathbf{x}(\omega(\mathbf{y})) - \mathbf{y}(\omega(\mathbf{x}))$$
 (for constant \mathbf{x}, \mathbf{y}).



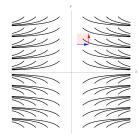
Intuitively, if $\omega \in \Omega^1(\mathbb{R}^n)$, then $d\omega(\mathbf{x}, \mathbf{y})$ measures the *difference* in the change in $\omega(\mathbf{y})$ as you move along \mathbf{x} and the change in $\omega(\mathbf{x})$ as you move along \mathbf{y} :

$$d\omega(\mathbf{x}, \mathbf{y}) = \mathbf{x}(\omega(\mathbf{y})) - \mathbf{y}(\omega(\mathbf{x}))$$
 (for constant \mathbf{x}, \mathbf{y}).



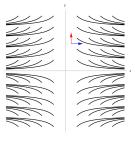
Intuitively, if $\omega \in \Omega^1(\mathbb{R}^n)$, then $d\omega(\mathbf{x}, \mathbf{y})$ measures the *difference* in the change in $\omega(\mathbf{y})$ as you move along \mathbf{x} and the change in $\omega(\mathbf{x})$ as you move along \mathbf{y} :

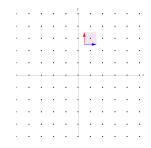
$$d\omega(\mathbf{x}, \mathbf{y}) = \mathbf{x}(\omega(\mathbf{y})) - \mathbf{y}(\omega(\mathbf{x}))$$
 (for constant \mathbf{x}, \mathbf{y}).



Intuitively, if $\omega \in \Omega^1(\mathbb{R}^n)$, then $d\omega(\mathbf{x}, \mathbf{y})$ measures the *difference* in the change in $\omega(\mathbf{y})$ as you move along \mathbf{x} and the change in $\omega(\mathbf{x})$ as you move along \mathbf{y} :

$$d\omega(\mathbf{x}, \mathbf{y}) = \mathbf{x}(\omega(\mathbf{y})) - \mathbf{y}(\omega(\mathbf{x}))$$
 (for constant \mathbf{x}, \mathbf{y}).



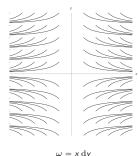


Intuitively, if $\omega \in \Omega^1(\mathbb{R}^n)$, then $d\omega(\mathbf{x}, \mathbf{y})$ measures the *difference* in the change in $\omega(\mathbf{y})$ as you move along \mathbf{x} and the change in $\omega(\mathbf{x})$ as you move along \mathbf{y} :

$$d\omega(\mathbf{x}, \mathbf{y}) = \mathbf{x}(\omega(\mathbf{y})) - \mathbf{y}(\omega(\mathbf{x}))$$
 (for constant \mathbf{x}, \mathbf{y}).

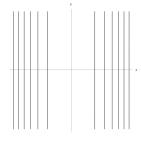
The exterior derivative can therefore be seen as the *boundary* of the lines drawn by a form.

Vector Calculus Without Vectors



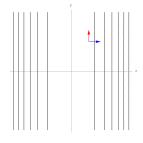
Intuitively, if $\omega \in \Omega^1(\mathbb{R}^n)$, then $d\omega(\mathbf{x}, \mathbf{y})$ measures the *difference* in the change in $\omega(\mathbf{y})$ as you move along \mathbf{x} and the change in $\omega(\mathbf{x})$ as you move along \mathbf{y} :

$$d\omega(\mathbf{x}, \mathbf{y}) = \mathbf{x}(\omega(\mathbf{y})) - \mathbf{y}(\omega(\mathbf{x}))$$
 (for constant \mathbf{x}, \mathbf{y}).



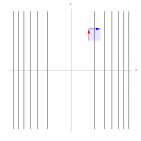
Intuitively, if $\omega \in \Omega^1(\mathbb{R}^n)$, then $d\omega(\mathbf{x}, \mathbf{y})$ measures the *difference* in the change in $\omega(\mathbf{y})$ as you move along \mathbf{x} and the change in $\omega(\mathbf{x})$ as you move along \mathbf{y} :

$$d\omega(\mathbf{x}, \mathbf{y}) = \mathbf{x}(\omega(\mathbf{y})) - \mathbf{y}(\omega(\mathbf{x}))$$
 (for constant \mathbf{x}, \mathbf{y}).



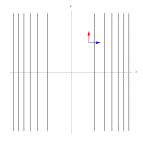
Intuitively, if $\omega \in \Omega^1(\mathbb{R}^n)$, then $d\omega(\mathbf{x}, \mathbf{y})$ measures the *difference* in the change in $\omega(\mathbf{y})$ as you move along \mathbf{x} and the change in $\omega(\mathbf{x})$ as you move along \mathbf{y} :

$$d\omega(\mathbf{x}, \mathbf{y}) = \mathbf{x}(\omega(\mathbf{y})) - \mathbf{y}(\omega(\mathbf{x}))$$
 (for constant \mathbf{x}, \mathbf{y}).



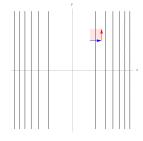
Intuitively, if $\omega \in \Omega^1(\mathbb{R}^n)$, then $d\omega(\mathbf{x}, \mathbf{y})$ measures the *difference* in the change in $\omega(\mathbf{y})$ as you move along \mathbf{x} and the change in $\omega(\mathbf{x})$ as you move along \mathbf{y} :

$$d\omega(\mathbf{x}, \mathbf{y}) = \mathbf{x}(\omega(\mathbf{y})) - \mathbf{y}(\omega(\mathbf{x}))$$
 (for constant \mathbf{x}, \mathbf{y}).



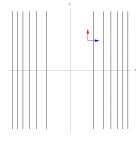
Intuitively, if $\omega \in \Omega^1(\mathbb{R}^n)$, then $d\omega(\mathbf{x}, \mathbf{y})$ measures the *difference* in the change in $\omega(\mathbf{y})$ as you move along \mathbf{x} and the change in $\omega(\mathbf{x})$ as you move along \mathbf{y} :

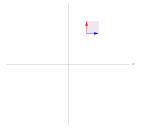
$$d\omega(\mathbf{x}, \mathbf{y}) = \mathbf{x}(\omega(\mathbf{y})) - \mathbf{y}(\omega(\mathbf{x}))$$
 (for constant \mathbf{x}, \mathbf{y}).



Intuitively, if $\omega \in \Omega^1(\mathbb{R}^n)$, then $d\omega(\mathbf{x}, \mathbf{y})$ measures the *difference* in the change in $\omega(\mathbf{y})$ as you move along \mathbf{x} and the change in $\omega(\mathbf{x})$ as you move along \mathbf{y} :

$$d\omega(\mathbf{x}, \mathbf{y}) = \mathbf{x}(\omega(\mathbf{y})) - \mathbf{y}(\omega(\mathbf{x}))$$
 (for constant \mathbf{x}, \mathbf{y}).

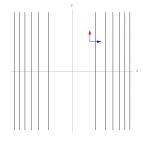




Intuitively, if $\omega \in \Omega^1(\mathbb{R}^n)$, then $d\omega(\mathbf{x}, \mathbf{y})$ measures the *difference* in the change in $\omega(\mathbf{y})$ as you move along \mathbf{x} and the change in $\omega(\mathbf{x})$ as you move along \mathbf{y} :

$$d\omega(\mathbf{x}, \mathbf{y}) = \mathbf{x}(\omega(\mathbf{y})) - \mathbf{y}(\omega(\mathbf{x}))$$
 (for constant \mathbf{x}, \mathbf{y}).

The exterior derivative can therefore be seen as the *boundary* of the lines drawn by a form.



 $d\omega = 0$

 $\omega = x dx$

The above constructions can be generalised to k-forms (k-linear alternating maps $\underbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}_{k \text{ times}} \to \mathbb{R}$ assigned to each point).

The above constructions can be generalised to k-forms (k-linear alternating maps $\underbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}_{k \text{ times}} \to \mathbb{R}$ assigned to each point).

The space of all k-forms is denoted $\Omega^k(\mathbb{R}^n)$.

The above constructions can be generalised to k-forms (k-linear alternating maps $\underbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}_{k \text{ times}} \to \mathbb{R}$ assigned to each point).

The space of all k-forms is denoted $\Omega^k(\mathbb{R}^n)$.

The wedge product and exterior derivative extend naturally, though ${\rm d}$ satisfies a "graded" product rule

$$d(\omega \wedge \alpha) = (d\omega) \wedge \alpha + (-1)^{k\ell} \omega \wedge (d\alpha),$$
$$\omega \in \Omega^k(\mathbb{R}^n), \quad \alpha \in \Omega^\ell(\mathbb{R}^n).$$

The above constructions can be generalised to k-forms (k-linear alternating maps $\underbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}_{k \text{ times}} \to \mathbb{R}$ assigned to each point).

The space of all k-forms is denoted $\Omega^k(\mathbb{R}^n)$.

The wedge product and exterior derivative extend naturally, though ${\rm d}$ satisfies a "graded" product rule

$$d(\omega \wedge \alpha) = (d\omega) \wedge \alpha + (-1)^{k\ell} \omega \wedge (d\alpha),$$
$$\omega \in \Omega^k(\mathbb{R}^n), \quad \alpha \in \Omega^\ell(\mathbb{R}^n).$$

Important fact: by the symmetry of mixed partial derivatives, $d(d\omega) = 0$ for all ω . This corresponds to the fact that $\partial(\partial X) = \emptyset$.

As we've come to expect, a basis for $\Omega^k(\mathbb{R}^n)$ is given by

$$\left\{\mathrm{d} x_{i_1} \wedge \cdots \wedge \mathrm{d} x_{i_k}\right\}_{i_1 < \cdots < i_k}.$$

As we've come to expect, a basis for $\Omega^k(\mathbb{R}^n)$ is given by

$$\left\{\mathrm{d} x_{i_1} \wedge \cdots \wedge \mathrm{d} x_{i_k}\right\}_{i_1 < \cdots < i_k}.$$

What happens in $\Omega^{n+1}(\mathbb{R}^n)$?

As we've come to expect, a basis for $\Omega^k(\mathbb{R}^n)$ is given by

$$\left\{\mathrm{d} x_{i_1} \wedge \cdots \wedge \mathrm{d} x_{i_k}\right\}_{i_1 < \cdots < i_k}.$$

What happens in $\Omega^{n+1}(\mathbb{R}^n)$? A basis is given by n+1 forms wedged together.

As we've come to expect, a basis for $\Omega^k(\mathbb{R}^n)$ is given by

$$\left\{\mathrm{d} x_{i_1} \wedge \cdots \wedge \mathrm{d} x_{i_k}\right\}_{i_1 < \cdots < i_k}.$$

What happens in $\Omega^{n+1}(\mathbb{R}^n)$? A basis is given by n+1 forms wedged together. This means that we must have a repeated dx_i somewhere!

As we've come to expect, a basis for $\Omega^k(\mathbb{R}^n)$ is given by

$$\left\{\mathrm{d} x_{i_1} \wedge \cdots \wedge \mathrm{d} x_{i_k}\right\}_{i_1 < \cdots < i_k}.$$

What happens in $\Omega^{n+1}(\mathbb{R}^n)$? A basis is given by n+1 forms wedged together. This means that we must have a repeated $\mathrm{d}x_i$ somewhere! Since \wedge is alternating, all such wedge products are zero.

As we've come to expect, a basis for $\Omega^k(\mathbb{R}^n)$ is given by

$$\left\{\mathrm{d} x_{i_1} \wedge \cdots \wedge \mathrm{d} x_{i_k}\right\}_{i_1 < \cdots < i_k}.$$

What happens in $\Omega^{n+1}(\mathbb{R}^n)$? A basis is given by n+1 forms wedged together. This means that we must have a repeated $\mathrm{d}x_i$ somewhere! Since \wedge is alternating, all such wedge products are zero. This means:

Proposition

If k > n, then $\Omega^k(\mathbb{R}^n) = \{0\}$. That is, $\Omega^n(\mathbb{R}^n)$ is the highest order possible. Moreover, $\dim(\Omega^n(\mathbb{R}^n)) = 1$.

As we've come to expect, a basis for $\Omega^k(\mathbb{R}^n)$ is given by

$$\left\{\mathrm{d} x_{i_1} \wedge \cdots \wedge \mathrm{d} x_{i_k}\right\}_{i_1 < \cdots < i_k}.$$

What happens in $\Omega^{n+1}(\mathbb{R}^n)$? A basis is given by n+1 forms wedged together. This means that we must have a repeated $\mathrm{d}x_i$ somewhere! Since \wedge is alternating, all such wedge products are zero. This means:

Proposition

If k > n, then $\Omega^k(\mathbb{R}^n) = \{0\}$. That is, $\Omega^n(\mathbb{R}^n)$ is the highest order possible. Moreover, $\dim(\Omega^n(\mathbb{R}^n)) = 1$.

Remark: A scalar field $f: \mathbb{R}^n \to \mathbb{R}$ can be thought of as taking in zero vectors.

As we've come to expect, a basis for $\Omega^k(\mathbb{R}^n)$ is given by

$$\left\{\mathrm{d} x_{i_1} \wedge \cdots \wedge \mathrm{d} x_{i_k}\right\}_{i_1 < \cdots < i_k}.$$

What happens in $\Omega^{n+1}(\mathbb{R}^n)$? A basis is given by n+1 forms wedged together. This means that we must have a repeated $\mathrm{d}x_i$ somewhere! Since \wedge is alternating, all such wedge products are zero. This means:

Proposition

If k > n, then $\Omega^k(\mathbb{R}^n) = \{0\}$. That is, $\Omega^n(\mathbb{R}^n)$ is the highest order possible. Moreover, $\dim(\Omega^n(\mathbb{R}^n)) = 1$.

Remark: A scalar field $f: \mathbb{R}^n \to \mathbb{R}$ can be thought of as taking in zero vectors. Because of this, we say scalar fields are *0-forms*, and denote $C^{\infty}(\mathbb{R}^n,\mathbb{R})=\Omega^0(\mathbb{R}^n)$.

k-forms can be thought of as "dual" to (n-k)-forms: if you wedge a k-form and an (n-k)-form, you will get the unique (up to a scalar) n-form.

k-forms can be thought of as "dual" to (n-k)-forms: if you wedge a k-form and an (n-k)-form, you will get the unique (up to a scalar) n-form.

Definition

The *Hodge star* \star : $\Omega^k(\mathbb{R}^n) \to \Omega^{n-k}(\mathbb{R}^n)$ is the linear operator such that if $\omega = \mathrm{d} x_{i_1} \wedge \cdots \wedge \mathrm{d} x_{i_k}$, then

$$\omega \wedge (\star \omega) = \mathrm{d} x_1 \wedge \cdots \wedge \mathrm{d} x_n$$
.

k-forms can be thought of as "dual" to (n-k)-forms: if you wedge a k-form and an (n-k)-form, you will get the unique (up to a scalar) n-form.

Definition

The *Hodge star* \star : $\Omega^k(\mathbb{R}^n) \to \Omega^{n-k}(\mathbb{R}^n)$ is the linear operator such that if $\omega = \mathrm{d} x_{i_1} \wedge \cdots \wedge \mathrm{d} x_{i_k}$, then

$$\omega \wedge (\star \omega) = \mathrm{d} x_1 \wedge \cdots \wedge \mathrm{d} x_n.$$

This provides an isomorphism

$$\Omega^k(\mathbb{R}^n) \longleftrightarrow \Omega^{n-k}(\mathbb{R}^n).$$

k-forms can be thought of as "dual" to (n-k)-forms: if you wedge a k-form and an (n-k)-form, you will get the unique (up to a scalar) n-form.

Definition

The *Hodge star* $\star : \Omega^k(\mathbb{R}^n) \to \Omega^{n-k}(\mathbb{R}^n)$ is the linear operator such that if $\omega = \mathrm{d} x_{i_1} \wedge \cdots \wedge \mathrm{d} x_{i_k}$, then

$$\omega \wedge (\star \omega) = \mathrm{d} x_1 \wedge \cdots \wedge \mathrm{d} x_n.$$

This provides an isomorphism

$$\Omega^k(\mathbb{R}^n) \longleftrightarrow \Omega^{n-k}(\mathbb{R}^n).$$

In fact,
$$\star(\star\omega) = (-1)^{k(n-k)}\omega$$
.

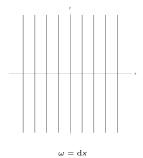
The Hodge star "completes" a form to the entire space.

The Hodge star "completes" a form to the entire space.

The Hodge star can therefore be seen as the *orthogonal complement* of the lines drawn by a form.

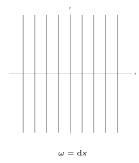
The Hodge star "completes" a form to the entire space.

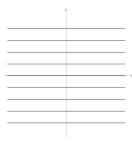
The Hodge star can therefore be seen as the *orthogonal complement* of the lines drawn by a form.



The Hodge star "completes" a form to the entire space.

The Hodge star can therefore be seen as the *orthogonal complement* of the lines drawn by a form.

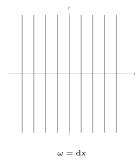


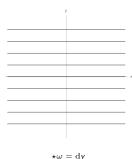


 $\star \omega = dv$

The Hodge star "completes" a form to the entire space.

The Hodge star can therefore be seen as the *orthogonal complement* of the lines drawn by a form.





The fact that $\star(\star\omega)=(-1)^{k(n-k)}\omega$ corresponds to the fact that $(U^{\perp})^{\perp} = U$ (and U = -U).

$$\mathfrak{X}(\mathbb{R}^3)$$

$$\mathfrak{X}(\mathbb{R}^3)$$

$$\Omega^1(\mathbb{R}^3)$$

$$\mathfrak{X}(\mathbb{R}^3)$$

$$\downarrow^{\flat}$$
 $\Omega^1(\mathbb{R}^3)$

$$\mathfrak{X}(\mathbb{R}^3)$$
 $\sharp \uparrow \downarrow \flat$
 $\Omega^1(\mathbb{R}^3)$

$$\mathfrak{X}(\mathbb{R}^3)$$

$$\sharp \dot{\mathbb{T}} \downarrow_{\flat}$$
 $\Omega^0(\mathbb{R}^3)$ $\Omega^1(\mathbb{R}^3)$

$$\mathfrak{X}(\mathbb{R}^3)$$

$$\sharp igcap \downarrow_{\flat}$$
 $\Omega^0(\mathbb{R}^3) \stackrel{\mathrm{d}}{-\!\!\!-\!\!\!-} \Omega^1(\mathbb{R}^3)$

$$\mathfrak{X}(\mathbb{R}^3)$$

$$\sharp \uparrow \downarrow_{\flat}$$

$$\Omega^0(\mathbb{R}^3) \stackrel{\mathrm{d}}{\longrightarrow} \Omega^1(\mathbb{R}^3) \qquad \Omega^2(\mathbb{R}^3)$$

$$\begin{array}{c} \mathfrak{X}(\mathbb{R}^3) \\ & \text{ from } \\ \Omega^0(\mathbb{R}^3) \stackrel{\mathrm{d}}{\longrightarrow} \Omega^1(\mathbb{R}^3) \stackrel{\mathrm{d}}{\longrightarrow} \Omega^2(\mathbb{R}^3) \end{array}$$

$$\begin{array}{ccc} \mathfrak{X}(\mathbb{R}^3) & & & & \\ & & & \downarrow \uparrow \downarrow_{\flat} & & & \\ \Omega^0(\mathbb{R}^3) & \stackrel{\mathrm{d}}{\longrightarrow} & \Omega^1(\mathbb{R}^3) & \stackrel{\mathrm{d}}{\longrightarrow} & \Omega^2(\mathbb{R}^3) & & & \Omega^3(\mathbb{R}^3) \end{array}$$

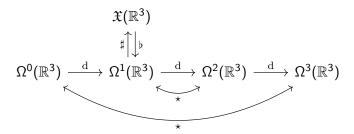
This is the picture we've built up so far for \mathbb{R}^3 :

$$\begin{array}{c} \mathfrak{X}(\mathbb{R}^3) \\ & \text{figure } \\ \Omega^0(\mathbb{R}^3) \stackrel{\mathrm{d}}{\longrightarrow} \Omega^1(\mathbb{R}^3) \stackrel{\mathrm{d}}{\longrightarrow} \Omega^2(\mathbb{R}^3) \stackrel{\mathrm{d}}{\longrightarrow} \Omega^3(\mathbb{R}^3) \end{array}$$

This is the picture we've built up so far for \mathbb{R}^3 :

$$\begin{array}{ccc} \mathfrak{X}(\mathbb{R}^3) & & & & \\ & & & \downarrow \uparrow \downarrow \flat & & \\ \Omega^0(\mathbb{R}^3) & \stackrel{\mathrm{d}}{\longrightarrow} & \Omega^1(\mathbb{R}^3) & \stackrel{\mathrm{d}}{\longrightarrow} & \Omega^2(\mathbb{R}^3) & \stackrel{\mathrm{d}}{\longrightarrow} & \Omega^3(\mathbb{R}^3) \end{array}$$

This is the picture we've built up so far for \mathbb{R}^3 :



This is the picture we've built up so far for \mathbb{R}^3 :

$$\mathfrak{X}(\mathbb{R}^3)$$

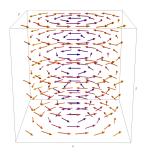
$$\sharp \uparrow \downarrow \flat$$

$$\Omega^0(\mathbb{R}^3) \xrightarrow{\mathrm{d}} \Omega^1(\mathbb{R}^3) \xrightarrow{\mathrm{d}} \Omega^2(\mathbb{R}^3) \xrightarrow{\mathrm{d}} \Omega^3(\mathbb{R}^3)$$

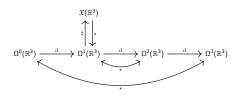
Let's do some calculus! (Finally!)

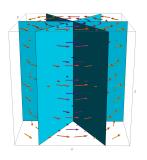
Let $F \in \mathfrak{X}(\mathbb{R}^3)$, and let's take the exterior derivative of the associated 1-form.

Let $F \in \mathfrak{X}(\mathbb{R}^3)$, and let's take the exterior derivative of the associated 1-form. That is, let's consider $\mathrm{d}F^{\flat}$.

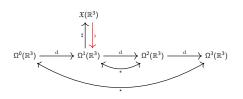


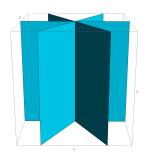
$$F = (-y, x, 0)$$



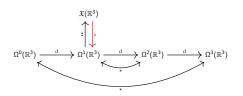


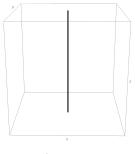
$$F^{\flat} = -v \, \mathrm{d}x + x \, \mathrm{d}v$$

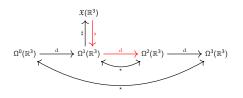


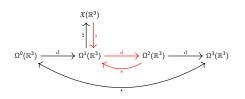


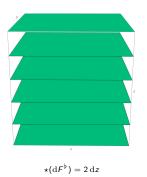
$$F^{\flat} = -v \, \mathrm{d}x + x \, \mathrm{d}v$$

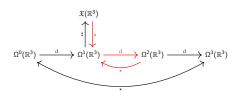


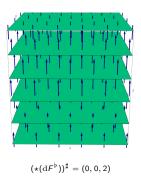


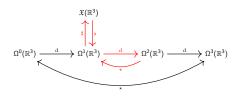


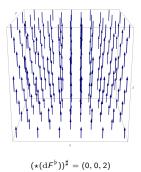


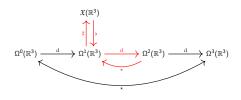










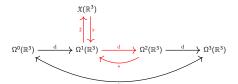


Curl as an Exterior Derivative

Definition

The *curl* is the operator $\operatorname{curl}:\mathfrak{X}(\mathbb{R}^3)\to\mathfrak{X}(\mathbb{R}^3)$ defined by

$$\operatorname{curl}(F) = (\star(\mathrm{d}F^{\flat}))^{\sharp}.$$

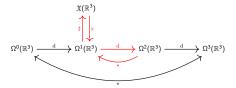


Curl as an Exterior Derivative

Definition

The *curl* is the operator $\operatorname{curl}:\mathfrak{X}(\mathbb{R}^3)\to\mathfrak{X}(\mathbb{R}^3)$ defined by

$$\operatorname{curl}(F) = (\star(\mathrm{d}F^{\flat}))^{\sharp}.$$



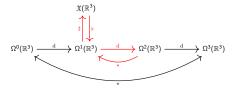
The \star , \flat , \sharp kind of obscure what's going on: they are just isomorphisms allowing us to identify one space with another.

Curl as an Exterior Derivative

Definition

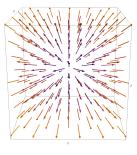
The *curl* is the operator $\operatorname{curl}:\mathfrak{X}(\mathbb{R}^3)\to\mathfrak{X}(\mathbb{R}^3)$ defined by

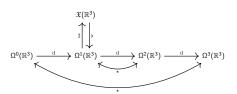
$$\operatorname{curl}(F) = (\star(\mathrm{d}F^{\flat}))^{\sharp}.$$

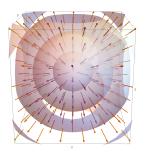


The \star , \flat , \sharp kind of obscure what's going on: they are just isomorphisms allowing us to identify one space with another. What we're really doing is differentiating a 1-form and interpreting it as a vector field.

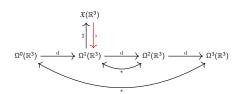
In a similar way, we can see the divergence as the *derivative of a 2-form*.



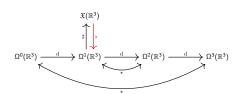


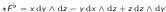


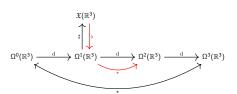
 $F^{\flat} = x \, \mathrm{d}x + y \, \mathrm{d}y + z \, \mathrm{d}z$

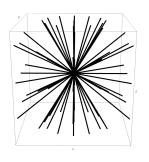


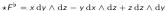
 $F^{\flat} = x \, \mathrm{d}x + y \, \mathrm{d}y + z \, \mathrm{d}z$

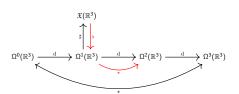


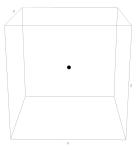




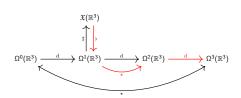




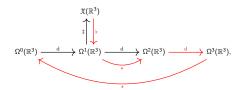




$$d(\star F^{\flat}) = 3 dx \wedge dy \wedge dz$$



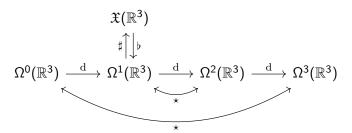
In a similar way, we can see the divergence as the *derivative of a 2-form*. Let's consider F(x, y, z) = (x, y, z).

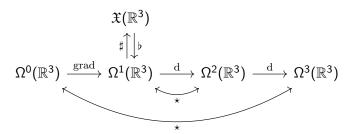


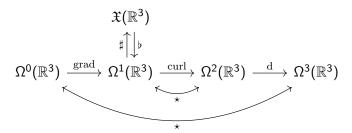
Definition

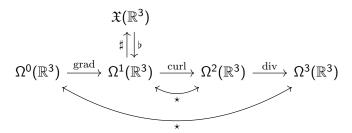
The *divergence* is the operator $\mathrm{div}:\mathfrak{X}(\mathbb{R}^3)\to C^\infty(\mathbb{R}^3,\mathbb{R})$ defined by

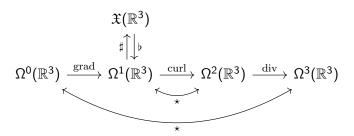
$$\operatorname{div}(F) = \star \operatorname{d}(\star F^{\flat}).$$









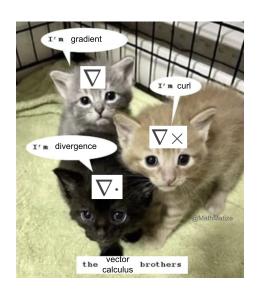


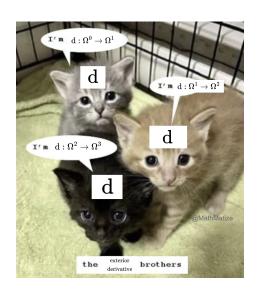
Exercise

We know (MATH2001) that conservative vector fields have zero curl:

$$\nabla \times (\nabla f) = 0.$$

Prove this fact in two lines using the framework of forms. See if you can come up with another similar fact.





Integrating Forms

Not only can we differentiate forms, but we can also *integrate* them (over a suitable "domain").

Integrating Forms

Not only can we differentiate forms, but we can also *integrate* them (over a suitable "domain").

If $\omega \in \Omega^k(\mathbb{R}^n)$, we can integrate it over a k-dimensional surface S.

Not only can we differentiate forms, but we can also *integrate* them (over a suitable "domain").

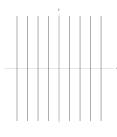
If $\omega \in \Omega^k(\mathbb{R}^n)$, we can integrate it over a k-dimensional surface S. To do this, simply count the number of times S intersects ω .

Not only can we differentiate forms, but we can also *integrate* them (over a suitable "domain").

If $\omega \in \Omega^k(\mathbb{R}^n)$, we can integrate it over a k-dimensional surface S. To do this, simply count the number of times S intersects ω . In this way, the integral $\int_S \omega$ is a *flux integral*.

Not only can we differentiate forms, but we can also *integrate* them (over a suitable "domain").

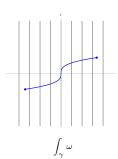
If $\omega \in \Omega^k(\mathbb{R}^n)$, we can integrate it over a k-dimensional surface S. To do this, simply count the number of times S intersects ω . In this way, the integral $\int_S \omega$ is a *flux integral*.



 $\omega = dx$

Not only can we differentiate forms, but we can also *integrate* them (over a suitable "domain").

If $\omega \in \Omega^k(\mathbb{R}^n)$, we can integrate it over a k-dimensional surface S. To do this, simply count the number of times S intersects ω . In this way, the integral $\int_S \omega$ is a *flux integral*.



As a warmup, consider a function $f: \mathbb{R}^n \to \mathbb{R}$ and the exterior derivative $\mathrm{d} f$.

As a warmup, consider a function $f: \mathbb{R}^n \to \mathbb{R}$ and the exterior derivative $\mathrm{d} f$. Integrating this over a curve γ is the *line integral*

$$\int_{\gamma} \mathrm{d}f := \int_{a}^{b} \mathrm{d}f_{\gamma(t)}(\gamma'(t)) \, \mathrm{d}t = \int_{\gamma} \nabla f \cdot \mathrm{d}s.$$

As a warmup, consider a function $f: \mathbb{R}^n \to \mathbb{R}$ and the exterior derivative $\mathrm{d} f$. Integrating this over a curve γ is the *line integral*

$$\int_{\gamma} \mathrm{d}f := \int_{a}^{b} \mathrm{d}f_{\gamma(t)}(\gamma'(t)) \, \mathrm{d}t = \int_{\gamma} \nabla f \cdot \mathrm{d}s.$$

Recall that df is the contour plot of f, and the line integral counts how many lines we cross as we traverse γ .

As a warmup, consider a function $f: \mathbb{R}^n \to \mathbb{R}$ and the exterior derivative $\mathrm{d} f$. Integrating this over a curve γ is the *line integral*

$$\int_{\gamma} \mathrm{d}f := \int_{a}^{b} \mathrm{d}f_{\gamma(t)}(\gamma'(t)) \, \mathrm{d}t = \int_{\gamma} \nabla f \cdot \mathrm{d}s.$$

Recall that $\mathrm{d}f$ is the contour plot of f, and the line integral counts how many lines we cross as we traverse γ . That is, the line integral is the *net height* gained in traversing the curve.

As a warmup, consider a function $f: \mathbb{R}^n \to \mathbb{R}$ and the exterior derivative $\mathrm{d} f$. Integrating this over a curve γ is the *line integral*

$$\int_{\gamma} \mathrm{d}f := \int_{a}^{b} \mathrm{d}f_{\gamma(t)}(\gamma'(t)) \, \mathrm{d}t = \int_{\gamma} \nabla f \cdot \mathrm{d}s.$$

Recall that $\mathrm{d} f$ is the contour plot of f, and the line integral counts how many lines we cross as we traverse γ . That is, the line integral is the *net height* gained in traversing the curve. Mathematically, if $\gamma:[a,b]\to\mathbb{R}^n$, then

$$\int_{\gamma} \mathrm{d}f = f(\gamma(b)) - f(\gamma(a)).$$

As a warmup, consider a function $f: \mathbb{R}^n \to \mathbb{R}$ and the exterior derivative $\mathrm{d} f$. Integrating this over a curve γ is the *line integral*

$$\int_{\gamma} \mathrm{d}f := \int_{\mathsf{a}}^{\mathsf{b}} \mathrm{d}f_{\gamma(t)}(\gamma'(t)) \, \mathrm{d}t = \int_{\gamma} \nabla f \cdot \mathrm{d}s.$$

Recall that $\mathrm{d} f$ is the contour plot of f, and the line integral counts how many lines we cross as we traverse γ . That is, the line integral is the *net height* gained in traversing the curve. Mathematically, if $\gamma:[a,b]\to\mathbb{R}^n$, then

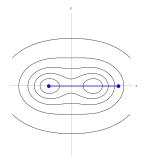
$$\int_{\gamma} \mathrm{d}f = f(\gamma(b)) - f(\gamma(a)).$$

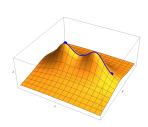
This is the fundamental theorem of line integrals.

Recall that $\mathrm{d} f$ is the contour plot of f, and the line integral counts how many lines we cross as we traverse γ . That is, the line integral is the *net height* gained in traversing the curve. Mathematically, if $\gamma:[a,b]\to\mathbb{R}^n$, then

$$\int_{\gamma} \mathrm{d}f = f(\gamma(b)) - f(\gamma(a)).$$

This is the fundamental theorem of line integrals.





This statement can be generalised with *Stokes' theorem*.

This statement can be generalised with *Stokes' theorem*.

Theorem (Stokes)

We have (with the correct adjectives for $U \subseteq \mathbb{R}^n$)

$$\int_{U} \mathrm{d}\omega = \int_{\partial U} \omega.$$

This statement can be generalised with *Stokes' theorem*.

Theorem (Stokes)

We have (with the correct adjectives for $U \subseteq \mathbb{R}^n$)

$$\int_{U} \mathrm{d}\omega = \int_{\partial U} \omega.$$

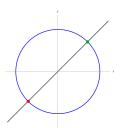
This is actually saying something very trivial: the number of lines that enter (and don't exit) a region is the number of lines that enter (and don't exit) a region.

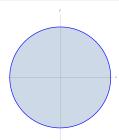
This statement can be generalised with *Stokes' theorem*.

Theorem (Stokes)

We have (with the correct adjectives for $U \subseteq \mathbb{R}^n$)

$$\int_{U} \mathrm{d}\omega = \int_{\partial U} \omega.$$



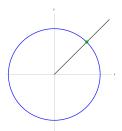


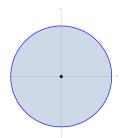
This statement can be generalised with *Stokes' theorem*.

Theorem (Stokes)

We have (with the correct adjectives for $U \subseteq \mathbb{R}^n$)

$$\int_{U} \mathrm{d}\omega = \int_{\partial U} \omega.$$





The Many Faces of Stokes' Theorem

Theorem (Stokes)

We have (with the correct adjectives for $U \subseteq \mathbb{R}^n$)

$$\int_{U} \mathrm{d}\omega = \int_{\partial U} \omega.$$

By varying U and ω , we recover many classical vector calculus theorems.

The Many Faces of Stokes' Theorem

Theorem (Stokes)

We have (with the correct adjectives for $U \subseteq \mathbb{R}^n$)

$$\int_{\mathcal{U}} \mathrm{d}\omega = \int_{\partial \mathcal{U}} \omega.$$

By varying U and ω , we recover many classical vector calculus theorems.

U	∂U	ω	$\mathrm{d}\omega$	Theorem
[a, b]	{ a, b}	f	f'(x) dx	FTC
$\gamma([a,b])$	$\{\gamma(a),\gamma(b)\}$	f	$(\nabla f)^{\flat}$	FTLI
U	∂U	$\omega\in\Omega^1$	$d\omega$	Green's theorem
S	∂S	F♭	$\operatorname{curl}(F)^{\flat}$	Stokes' theorem
V	∂V	∗F♭	$\star \operatorname{div}(F)$	Divergence theorem

Some further topics regarding differential forms include:

Some further topics regarding differential forms include:

• the exterior calculus on manifolds.

Some further topics regarding differential forms include:

- the exterior calculus on manifolds.
- closed and exact forms and the de Rham cohomology.

Some further topics regarding differential forms include:

- the exterior calculus on manifolds.
- closed and exact forms and the de Rham cohomology.
- connections and the Yang-Mills equations.

References

For some further reading:

- K. Broder. Lectures on Vector Calculus, available online at https://www.kylebroder.com/_files/ugd/cb72c5_ b2fcc018d79248379cd61faf199ed2bb.pdf, 2022.
- G. Weinreich. *Geometrical Vectors*, The University of Chicago Press, 1998.
- C. Wisner, K. Thorne, J. Wheeler, D. Kaiser. Gravitation, Princeton University Press, 2017.