Semi-supervised learning

Nazeef Hamid

MSS Math Talk

August 2025

Outline

- Background
- 2 Machine learning in practice
- 3 Semi-supervised learning theory
- **4** Semi-supervised learning algorithms

Inputs and outputs

- Features (inputs) are measurable properties of data .
 - Numerical or categorical
 - $\mathbf{x} \in \mathbb{R}^d$ d-dimensional feature vector
- Labels (outputs) are denoted y, possibly multi-dimensional
 - Continuous for regression problems
 - Finitely many values for classification problems
- Encode categorical labels with a "one-hot" vector

$$\text{``red''} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \text{``green''} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \text{``blue''} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

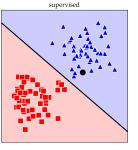
Supervised and unsupervised learning

Supervised learning: $\mathcal{D}_{sl} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)\}$

"learn" how to choose the correct y for a given x

Unsupervised learning: $\mathcal{D}_{usl} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$

• Find patterns or trends in the x_i





Semi-supervised learning is somewhere in the middle!

•
$$\mathcal{D}_{ssl} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_r, y_r), \mathbf{x}_{r+1}, \dots, \mathbf{x}_n\}$$

Why do semi-supervised learning?

Semi-supervised learning dataset - r is small

•
$$\mathcal{D}_{ssl} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_r, y_r), \mathbf{x}_{r+1}, \dots, \mathbf{x}_n\}$$

Labels can be very expensive, while data "in the wild" is usually cheap

- Medical imaging
- Fraud detection

In this talk we focus on classification problems

Empirical risk minimisation (ERM)

- Choose a function h that maps x to the correct y
- Loss function measures "correctness"
 - Squared error: $\mathcal{L}(h(\mathbf{x}), \mathbf{y}) = ||h(\mathbf{x}) \mathbf{y}||_2^2$
 - Absolute error: $\mathcal{L}(h(\mathbf{x}), \mathbf{y}) = ||h(\mathbf{x}) \mathbf{y}||_1$
 - 0-1 loss: $\mathcal{L}(h(\mathbf{x}), \mathbf{y}) = \mathbb{1}_{\{h(\mathbf{x}) \neq \mathbf{y}\}}$
 - Cross entropy: $\mathcal{L}(h(\mathbf{x}), \mathbf{y}) = -\sum_{c=1}^{C} (\mathbf{y})_c \log((h(\mathbf{x}))_c)$
- Assume $h(\cdot; \theta)$ is a parametric function
 - Linear function $\mathbf{y} = W\mathbf{x} + \mathbf{b}$
 - Polynomial $a_n x^n + \cdots + a_1 x + a_0$
 - Neural network
- We wish to minimise the loss over all possible (x, y) pairs.

Empirical risk minimisation (ERM)

- In general we do not have all possible (\mathbf{x}, y) pairs.
- We do our best using a sample

Definition (Empirical risk minimisation)

Given a dataset $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)\}$ define

$$\theta^* = \underset{\theta \in \Omega}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^n \mathcal{L}(h(\mathbf{x}_i; \theta), y_i), \tag{1}$$

where θ is a vector of parameters. The resulting model $h(\cdot; \theta^*)$ is called the empirical risk minimiser for \mathcal{D} , \mathcal{L} .

"Learning" or "training" = solve the optimisation problem

Nazeef Hamid

Gradient-based learning

Train the model using gradient descent - iterative algorithm

$$f(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(h(\mathbf{x}_i; \boldsymbol{\theta}), y_i)$$

Gradient descent update rule

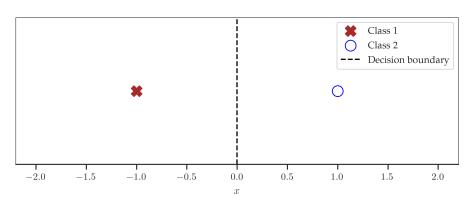
$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \eta^{(t)} \nabla \left. f(\boldsymbol{\theta}) \right|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{(t)}}$$

https://www.nucleusbox.com/an-intuition-behind-gradient-descent-using-python/

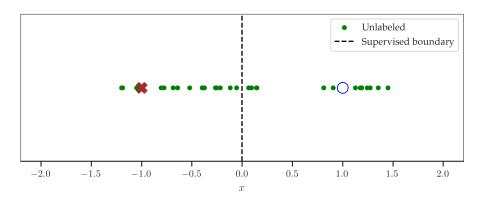
How is SSL possible?

$$f(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(h(\mathbf{x}_i; \boldsymbol{\theta}), y_i)$$

How can we use unlabelled data? The ERM needs labels

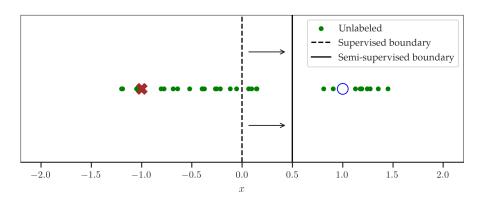


How is SSL possible?



• Where should we move the decision boundary?

How is SSL possible?



• We need to assume a link between y and x

SSL assumptions¹

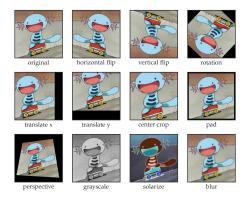
- Smoothness:
 - Examples with similar features should have similar labels
- Low density separation:
 - Decision boundaries should lie in low density regions
- Strategy: introduce a loss that penalises failing the assumptions
 - Consistency regularisation
 - Entropy minimisation
- New ERM problem encourages model output to match assumptions

$$\mathcal{L}_{\mathsf{total}} = \mathcal{L}_{\mathsf{sup}} + \lambda_{\mathit{u}} \mathcal{L}_{\mathsf{unsup}}$$

¹Chapelle, Schölkopf, and Zien 2006.

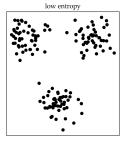
Consistency regularisation

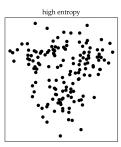
- Predictions made on similar examples should have the same label
- In practice, we generate similar examples with data augmentation
- Let x be unlabelled, α, β are augmentations. $h(\alpha(x)) \approx h(\beta(x))$



Entropy minimisation²

• The class conditional entropy is a measure of class overlap





Introduce a loss that penalises weak separation of classes

²Grandvalet and Bengio 2004.

FixMatch algorithm

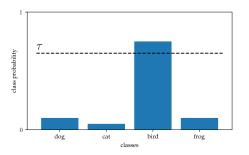
- An simple algorithm that leverages pseudo-labelling and data augmentation³
- Supervised loss standard cross entropy on labelled examples

$$\mathcal{L}_{\mathsf{sup}} \leftarrow \frac{1}{r} \sum_{i=1}^{r} \mathsf{CE}((h(\mathbf{x}_i); \theta), y_i)$$

- Unsupervised loss
 - Consistency regularisation by data augmentation
 - Entropy minimisation with pseudo-labelling

Pseudo-labelling⁴

- If we don't have the label make an artificial one
- Use a model that gives a probability distribution over the classes.
- Select high confidence predictions ($> \tau$) as pseudo labels

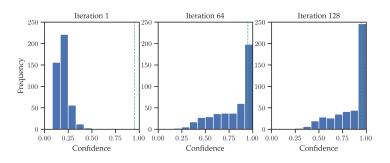


$$\mathbf{y}_{\text{pseudo}} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

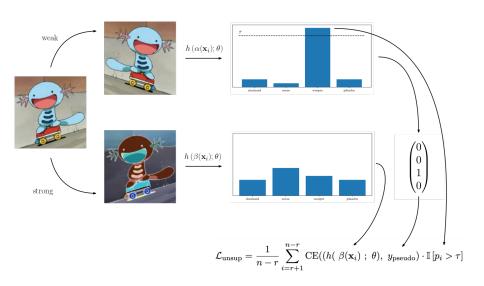
⁴Lee 2025.

Pseudo-labelling

- Equivalent to entropy minimisation
- The confidence threshold is important to reduce confirmation bias



FixMatch: Consistency regularisation



FixMatch

return \mathcal{L}_{total}

Algorithm 5 FixMatch forward step [18]

```
Require: Model h(\cdot; \theta)
                Labelled minibatch \mathcal{B}_s = \{(\mathbf{x}_i, \mathbf{y}_i) : i = 1, 1, \dots, B_s\}
                Unlabelled minibatch \mathcal{B}_{ij} = \{\mathbf{u}_i : i = 1, \dots, B_n\}
                Confidence threshold \tau
                Weak augmentation \alpha(\cdot), strong augmentation \beta(\cdot)
 1: \mathcal{L}_{\text{sup}} \leftarrow \frac{1}{B_i} \sum_{i=1}^{B_s} \text{CE}(h(\mathbf{x}_i); \theta), y_i)
                                                                                                > supervised loss on labelled examples
 2: for all i \in \{1, ..., B_n\} do
3: z_i \leftarrow h(\alpha(\mathbf{u}_i); \theta)
                                                                                        ▷ model output on weakly augmented input
 4: \hat{y}_i \leftarrow \arg\max \{\sigma(z_i)\}
                                                                                         > pseudo-label for weakly augmented input
 5: p_i \leftarrow \max\{\sigma(z_i)\}
                                                                                                                ⊳ confidence in pseudo-label
6: ▷ Supervised loss on strongly augmented unlabelled examples with high confidence pseudo-labels <
7: \mathcal{L}_{\text{unsup}} \leftarrow \frac{1}{B_u} \sum_{i=1}^{B_u} \mathbb{1}\left[p_i > \tau\right] \cdot \text{CE}\left(h(\beta(\mathbf{u}_i); \theta), \hat{y}_i\right)
8: \mathcal{L}_{\text{total}} \leftarrow \mathcal{L}_{\sup}^{u} + \lambda_u \mathcal{L}_{unsup}
```

Experiments

- MNIST handwritten digits dataset
- 60000 training examples, 10000 test examples
- SSL dataset simulated by withholding most labels

Experiments

Labels per class	1	4	10
Supervised FixMatch FullySupervised	$0.201{\pm}0.010\\0.620{\pm}0.078$		$0.731{\pm}0.075\\0.969{\pm}0.001$

Table: Average prediction accuracy on test set (mean±s.d over 3 seeds)

• https://github.com/nhamid289/sslpack

References I

- Chapelle, Olivier, Bernhard Schölkopf, and Alexander Zien, eds. (2006). Semi-supervised learning. en. Cambridge, Mass.
- Grandvalet, Yves and Yoshua Bengio (2004). Semi-supervised Learning by Entropy Minimization. (Visited on 06/02/2025).
- Lee, Dong-Hyun (2025). Pseudo-Label: The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks. en. (Visited on 06/02/2025).
- Sohn, Kihyuk et al. (2020). "FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence". In: *Advances in Neural Information Processing Systems*. (Visited on 08/10/2025).