The Power of Choice

Rhea Wolski/#1 Zorn's Lemma Fan AU

 ${\rm May}\ 2025$

• Basic Set Theory

- Basic Set Theory
- 2 The Axiom of Choice makes total sense

- Basic Set Theory
- 2 The Axiom of Choice makes total sense
- **3** AoC Equivalents we're in shambles.

- Basic Set Theory
- 2 The Axiom of Choice makes total sense
- **3** AoC Equivalents we're in shambles.
- The Power of Choice

Naive Set Theory:

"A Set is a Thing that contains Stuff according to rules"

Naive Set Theory:

"A Set is a Thing that contains Stuff according to rules"

Problems with Unrestricted Comprehension

For any property P, there exists a unique set

$$B = \{x \mid P(x)\}$$

Problems with Unrestricted Comprehension

For any property P, there exists a unique set

$$B = \{x \mid P(x)\}$$

Russel's Paradox (1901):

Let $R = \{x \mid x \notin x\}$. If $R \in R$, then $R \notin R$, but if $R \notin R$, then $R \in R$. Thus $R \in R \iff R \notin R$.

Naive Set Theory:

Zermelo-Fraenkel Set Theory:

"A Set is a Thing that contains Stuff according to rules" "A Set is a Thing that contains Stuff obeying the 8 Zermelo-Fraenkel Axiom Schema"

Zermelo-Fraenkel Axioms

- Axiom of Extensionality: Two sets are the same if they contain the same elements
- Axiom of Regularity: A non-empty set contains a member disjoint to it as a set
- **3** Axiom Schema of Restricted Comprehension: For any set X and any property P, there exists a subset of X: $B = \{x \in X \mid P(x)\}$
- Axiom of Pairing: For any two sets, there exists a set containing both sets as elements.
- Axiom of Union: For any set of sets, there exists a set containing every member of the members of the set.
- Axiom Schema of Replacement: The image of a set under any definable function is a set.
- **1** Axiom of Infinity: There exists an infinite set.
- Axiom of Power Set: For any set, there exists a set containing every subset.

Theory: Zermelo-Fraenkel Set Theory: Naive Set Theory: "A Set is a Thing "A Set is a Thing that contains Stuff that contains Stuff obeying the 8 according to rules" Zermelo-Fraenkel

Axiom Schema"

Pretentious Set

Choice Function: Let X be a collection of sets. A choice function is a function $f: X \to \bigcup X$ satisfying for all $A \in X$, $f(A) \in A$.

Choice Function: Let X be a collection of sets. A choice function is a function $f: X \to \bigcup X$ satisfying for all $A \in X$, $f(A) \in A$.

Figure: 3 shoe

Choice Function: Let X be a collection of sets. A choice function is a function $f: X \to \bigcup X$ satisfying for all $A \in X$, $f(A) \in A$.

Figure: 3 shoe

Figure: Many Many

shoe

Choice Function: Let X be a collection of sets. A choice function is a function $f: X \to \bigcup X$ satisfying for all $A \in X$, $f(A) \in A$.

Figure: 3 shoe

Figure: Many Many shoe

Figure: Many Many sock

Choice Function: Let X be a collection of sets. A choice function is a function $f: X \to \bigcup X$ satisfying for all $A \in X$, $f(A) \in A$.

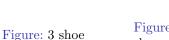


Figure: Many Many shoe

Figure: Many Many sock

Axiom of Choice: For any collection X of non-empty sets, there exists a choice function on X.

We have finally arrived at the worlds best axiom!

We have finally arrived at the worlds best axiom!

Zorn's Lemma: Every Poset in which every Chain has an Upper Bound has a maximal element.

We have finally arrived at the worlds best axiom!

A set equipped with a partial order.

Zorn's Lemma: Every Poset in which every Chain has an Upper Bound has a maximal element.

We have finally arrived at the worlds best axiom!

A set equipped with a partial order.

A totally ordered subset of a Poset.

Zorn's Lemma: Every Poset in which every Chain has an Upper Bound has a maximal element.

We have finally arrived at the worlds best axiom!

A set equipped with a partial order.

A totally ordered subset of a Poset.

Zorn's Lemma: Every Poset in which every Chain has an Upper Bound has a maximal element.

An element s of the poset satisfying for all x in the chain $x \leq s$

We have finally arrived at the worlds best axiom!

A set equipped with a partial order.

A totally ordered subset of a Poset.

Zorn's Lemma: Every Poset in which every Chain has an Upper Bound has a maximal element.

An element s of the poset satisfying for all x in the chain $x \leq s$

An element m of a Poset such that $\nexists s \neq m$ in the Poset satisfying $m \leq s$.

• Given Two sets, they either have the same cardinality, or one has smaller cardinality that the other.

- Given Two sets, they either have the same cardinality, or one has smaller cardinality that the other.
- Every Partially ordered set has a maximal chain.
- Every Partially ordered set has a maximal antichain.

- Given Two sets, they either have the same cardinality, or one has smaller cardinality that the other.
- Every Partially ordered set has a maximal chain.
- Every Partially ordered set has a maximal antichain.
- On every non-empty set S, there is a binary operation on S that gives S group structure.

- Given Two sets, they either have the same cardinality, or one has smaller cardinality that the other.
- Every Partially ordered set has a maximal chain.
- Every Partially ordered set has a maximal antichain.
- On every non-empty set S, there is a binary operation on S that gives S group structure.
- Every Ring contains a maximal ideal.

- Given Two sets, they either have the same cardinality, or one has smaller cardinality that the other.
- Every Partially ordered set has a maximal chain.
- Every Partially ordered set has a maximal antichain.
- On every non-empty set S, there is a binary operation on S that gives S group structure.
- Every Ring contains a maximal ideal.
- For every infinite set A, there is a bijection to the cartesian product $A \times A$.

Hamel Basis: Subset of Linearly Independent vectors of vector space V which span V with finite combinations.

Hamel Basis: Subset of Linearly Independent vectors of vector space V which span V with finite combinations.

You are probably thinking about vector spaces like:

$$\mathbb{R}^n$$
, \mathbb{C}^n , $P_n(\mathbb{F})$

Hamel Basis: Subset of Linearly Independent vectors of vector space V which span V with finite combinations.

You are probably thinking about vector spaces like:

$$\mathbb{R}^n$$
, \mathbb{C}^n , $P_n(\mathbb{F})$

Consider vector spaces such as:

C(X), the space of continuous real-valued functions.

 $c_0(\mathbb{R})$, the space of real sequences converging to 0.

The Well Ordering Theorem is a disgusting axiom for freaks.

The Well Ordering Theorem is a disgusting axiom for freaks.

Figure: Total Fucking Sicko

The Well Ordering Theorem is a disgusting axiom for freaks.

A set is Well-Ordered by a strict total order if every subset has a least element.

The Well Ordering Theorem is a disgusting axiom for freaks.

A set is Well-Ordered by a strict total order if every subset has a least element.

The Well Ordering Theorem says that every set can be Well Ordered.

The Well Ordering Theorem is a disgusting axiom for freaks.

A set is Well-Ordered by a strict total order if every subset has a least element.

The Well Ordering Theorem says that every set can be Well Ordered.

This is saying that on every set (in particular, on \mathbb{R}), there is a an ordering of all the elements, in which no distinct elements are equal, and any subset has a minimal element. Think about (0,1] in the reals.

Banach-Tarski

Not an equivalent to AoC, but an implied statement.

Banach Tarski says that we can take a ball, split it into finite pieces, and reassemble it into 2 identical balls to the original.

Figure: I stole this from wikipedia

Idk its kinda weird i guess.

Group Axioms:

- Associativity
- Identity
- Inverses

Group Axioms:

- Associativity
- Identity
- Inverses
- Commutativity

Group Axioms:

- •
- Identity
- Inverses
- •

When do we accept axioms?

Figure: Sick ass fucking picture of raven (left) and a pig (right)