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What is analytic number theory?

A paradox: integers are discrete, yet analysis (usually) deals with
continuous phenomena.

Elementary vs. Non-elementary (classical) approaches

Elementary

Real-valued (assymptotic)
estimation of arithmetic
functions or sums thereof; i.e,
without complex or harmonic
analysis.

Sieve methods (i.e sieve of
Eratosthenes, the large sieve;
sieve methods important in
modern An.NT)

Non-elementary

Use of transformations: e.g,
Dirichlet series over C,

{n 7→ an} ←→ D(s) =
∞∑
n=1

an
ns

.

Riemann zeta function:

ζ(s) =
∞∑
n=1

1

ns
.
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The squarefree integers

Definition

We say that a positive integer is squarefree if it is not divisible by the
square of any prime. I.e, the squarefree integers up to 20 are

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19

Let Q(x) denote the number of integers less than or equal to x ∈ R that
are squarefree. We have just seen that Q(20) = 13. Indeed,
Q(20)/20 = 0.65.

Question: What proportion of positive integers are squarefree?

Interpretation: Does the limit

lim
x→∞

Q(x)

x

exist; and if so, what is its value (which we call the asymptotic
density of Q). Exercise: P(x) := π(x) log x?
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A heuristic investigation of Q

We can proceed Sieve-theoretically!

For some n ∈ Z+, consider the first
4 · 9 · 25 · n = 900n integers. Removing all multiples of 4, the proportion
of integers in this range that remain are

(900− 900/4)n

900n
= 3/4.

Similarly, removing multiples of 9 and 25 gives us remaining proportions
of 8/9 and 24/25 respectively.

We can assign a probability, P(p2 ∤ n) = (p2 − 1)/p2 = 1− 1/p2, for
each p2, where p is prime. If p and q are distinct primes, then p2 ∤ n
doesn’t seem to influence the “probability” that q2 ∤ n; we can think
about these “probabilities” as independent. Thus

lim
x→∞

Q(x)

x
= lim

k→∞
P({4 ∤ n} ∩ · · · ∩ {p2k ∤ n})

= lim
k→∞

P(4 ∤ n) · · ·P(p2k ∤ n) =
∏
p

(
1− 1

p2

)
.

Ryan Braiden (He/Him) A Rapid Introduction to Analytic Number Theory



A heuristic investigation of Q

We can proceed Sieve-theoretically! For some n ∈ Z+, consider the first
4 · 9 · 25 · n = 900n integers.

Removing all multiples of 4, the proportion
of integers in this range that remain are

(900− 900/4)n

900n
= 3/4.

Similarly, removing multiples of 9 and 25 gives us remaining proportions
of 8/9 and 24/25 respectively.

We can assign a probability, P(p2 ∤ n) = (p2 − 1)/p2 = 1− 1/p2, for
each p2, where p is prime. If p and q are distinct primes, then p2 ∤ n
doesn’t seem to influence the “probability” that q2 ∤ n; we can think
about these “probabilities” as independent. Thus

lim
x→∞

Q(x)

x
= lim

k→∞
P({4 ∤ n} ∩ · · · ∩ {p2k ∤ n})

= lim
k→∞

P(4 ∤ n) · · ·P(p2k ∤ n) =
∏
p

(
1− 1

p2

)
.

Ryan Braiden (He/Him) A Rapid Introduction to Analytic Number Theory



A heuristic investigation of Q

We can proceed Sieve-theoretically! For some n ∈ Z+, consider the first
4 · 9 · 25 · n = 900n integers. Removing all multiples of 4, the proportion
of integers in this range that remain are

(900− 900/4)n

900n
= 3/4.

Similarly, removing multiples of 9 and 25 gives us remaining proportions
of 8/9 and 24/25 respectively.

We can assign a probability, P(p2 ∤ n) = (p2 − 1)/p2 = 1− 1/p2, for
each p2, where p is prime. If p and q are distinct primes, then p2 ∤ n
doesn’t seem to influence the “probability” that q2 ∤ n; we can think
about these “probabilities” as independent. Thus

lim
x→∞

Q(x)

x
= lim

k→∞
P({4 ∤ n} ∩ · · · ∩ {p2k ∤ n})

= lim
k→∞

P(4 ∤ n) · · ·P(p2k ∤ n) =
∏
p

(
1− 1

p2

)
.

Ryan Braiden (He/Him) A Rapid Introduction to Analytic Number Theory



A heuristic investigation of Q

We can proceed Sieve-theoretically! For some n ∈ Z+, consider the first
4 · 9 · 25 · n = 900n integers. Removing all multiples of 4, the proportion
of integers in this range that remain are

(900− 900/4)n

900n
= 3/4.

Similarly, removing multiples of 9 and 25 gives us remaining proportions
of 8/9 and 24/25 respectively.

We can assign a probability, P(p2 ∤ n) = (p2 − 1)/p2 = 1− 1/p2, for
each p2, where p is prime. If p and q are distinct primes, then p2 ∤ n
doesn’t seem to influence the “probability” that q2 ∤ n; we can think
about these “probabilities” as independent. Thus

lim
x→∞

Q(x)

x
= lim

k→∞
P({4 ∤ n} ∩ · · · ∩ {p2k ∤ n})

= lim
k→∞

P(4 ∤ n) · · ·P(p2k ∤ n) =
∏
p

(
1− 1

p2

)
.

Ryan Braiden (He/Him) A Rapid Introduction to Analytic Number Theory



A heuristic investigation of Q

We can proceed Sieve-theoretically! For some n ∈ Z+, consider the first
4 · 9 · 25 · n = 900n integers. Removing all multiples of 4, the proportion
of integers in this range that remain are

(900− 900/4)n

900n
= 3/4.

Similarly, removing multiples of 9 and 25 gives us remaining proportions
of 8/9 and 24/25 respectively.

We can assign a probability, P(p2 ∤ n) = (p2 − 1)/p2 = 1− 1/p2, for
each p2, where p is prime.

If p and q are distinct primes, then p2 ∤ n
doesn’t seem to influence the “probability” that q2 ∤ n; we can think
about these “probabilities” as independent. Thus

lim
x→∞

Q(x)

x
= lim

k→∞
P({4 ∤ n} ∩ · · · ∩ {p2k ∤ n})

= lim
k→∞

P(4 ∤ n) · · ·P(p2k ∤ n) =
∏
p

(
1− 1

p2

)
.

Ryan Braiden (He/Him) A Rapid Introduction to Analytic Number Theory



A heuristic investigation of Q

We can proceed Sieve-theoretically! For some n ∈ Z+, consider the first
4 · 9 · 25 · n = 900n integers. Removing all multiples of 4, the proportion
of integers in this range that remain are

(900− 900/4)n

900n
= 3/4.

Similarly, removing multiples of 9 and 25 gives us remaining proportions
of 8/9 and 24/25 respectively.

We can assign a probability, P(p2 ∤ n) = (p2 − 1)/p2 = 1− 1/p2, for
each p2, where p is prime. If p and q are distinct primes, then p2 ∤ n
doesn’t seem to influence the “probability” that q2 ∤ n; we can think
about these “probabilities” as independent.

Thus

lim
x→∞

Q(x)

x
= lim

k→∞
P({4 ∤ n} ∩ · · · ∩ {p2k ∤ n})

= lim
k→∞

P(4 ∤ n) · · ·P(p2k ∤ n) =
∏
p

(
1− 1

p2

)
.

Ryan Braiden (He/Him) A Rapid Introduction to Analytic Number Theory



A heuristic investigation of Q

We can proceed Sieve-theoretically! For some n ∈ Z+, consider the first
4 · 9 · 25 · n = 900n integers. Removing all multiples of 4, the proportion
of integers in this range that remain are

(900− 900/4)n

900n
= 3/4.

Similarly, removing multiples of 9 and 25 gives us remaining proportions
of 8/9 and 24/25 respectively.

We can assign a probability, P(p2 ∤ n) = (p2 − 1)/p2 = 1− 1/p2, for
each p2, where p is prime. If p and q are distinct primes, then p2 ∤ n
doesn’t seem to influence the “probability” that q2 ∤ n; we can think
about these “probabilities” as independent. Thus

lim
x→∞

Q(x)

x
= lim

k→∞
P({4 ∤ n} ∩ · · · ∩ {p2k ∤ n})

= lim
k→∞

P(4 ∤ n) · · ·P(p2k ∤ n) =
∏
p

(
1− 1

p2

)
.

Ryan Braiden (He/Him) A Rapid Introduction to Analytic Number Theory



The zeta function

Definition

Let ζ : R>1 → R such that

ζ(s) :=
∞∑
n=1

1

ns
.

We call ζ the zeta function on the real line s > 1.

Note: we know that ζ is defined on its domain (p-test) and uniformally
convergent on any interval [α,∞), α > 1, (Weierstrass’ M-test).
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Euler products

The zeta function is a “suitably nice” Dirichlet series and so it has an
Euler product; namely,

Zeta as a product indexed by the primes

ζ(s) =
∞∑
n=1

1

ns
=

∏
p

(
1− 1

ps

)−1

Euler proved this using a simple Sieve method!

As such, we can compute
our proportion (conjectured earlier)

ζ(2) = π2/6 ∏
p

(
1− 1

p2

)
= ζ(2)−1 =

6

π2
.

This is well-known but non-trivial. Euler did it without Dirichlet’s
methods!
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Time to make things precise...

The Proportion of Squarefree Integers

lim
x→∞

Q(x)

x
=

6

π2
≈ 0.608.

Proof [BD]: We want to make precise the notion of independence of
{p2 ∤ n} from {q2 ∤ n}.

Define Qr (x) to be the number of positive
integers less than or equal to x which are not divisible by the first r
primes (under the standard ordering). A positive integer n is not divisible
by the square of any of the first r primes iff n statisfies the system of
congruences

n ≡ ai mod p2i

for 1 ≤ i ≤ r where 0 < ai ≤ p2i − 1. By the Chinese Remainder
Theorem, this system is solvable and has a unique solution for a given
tuple (a1, . . . , ar ), once every multiple of 2232 · · · p2r .

There are (22 − 1)(32 − 1) · · · (p2r − 1) such systems of congruences
where 0 < ai ≤ p2i − 1. Thus, if y = k · 2232 · · · p2r then

Qr (y) = k(22 − 1) · · · (p2r − 1) = y(1− 2−2) · · · (1− p−2
r ).
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...the proof continues...

Hence

Qr (y) = y(1− 2−2) · · · (1− p−2
r ) =⇒ Qr (y)

y
= (1− 2−2) · · · (1− p−2

r )

and it is in this sense that we can consider {p2 ∤ n} and {q2 ∤ n}
“independent events”.

We need a similar expression for Qr (x) where
x ∈ R. Letting y = [x · 2−2 · · · p−2

r ]22 · · · p2r , observe that

0 ≤ Qr (x)− Qr (y) ≤ x − y < 22 · · · p2r
and

0 ≤ (x − y)
r∏

i=1

(1− p−2
i ) < x − y < 22 · · · p2r .

Alas, we write

Qr (x) = x
r∏

i=1

(1− p−2
i )− (x − y)

r∏
i=1

(1− p−2
i ) + Qr (x)− Qr (y)

= x
r∏

i=1

(1− p−2
i ) + θ · 22 · · · p2r , |θ| ≤ 1.

Ryan Braiden (He/Him) A Rapid Introduction to Analytic Number Theory



...the proof continues...

Hence

Qr (y) = y(1− 2−2) · · · (1− p−2
r ) =⇒ Qr (y)

y
= (1− 2−2) · · · (1− p−2

r )

and it is in this sense that we can consider {p2 ∤ n} and {q2 ∤ n}
“independent events”. We need a similar expression for Qr (x) where
x ∈ R. Letting y = [x · 2−2 · · · p−2

r ]22 · · · p2r , observe that

0 ≤ Qr (x)− Qr (y) ≤ x − y < 22 · · · p2r
and

0 ≤ (x − y)
r∏

i=1

(1− p−2
i ) < x − y < 22 · · · p2r .

Alas, we write

Qr (x) = x
r∏

i=1

(1− p−2
i )− (x − y)

r∏
i=1

(1− p−2
i ) + Qr (x)− Qr (y)

= x
r∏

i=1

(1− p−2
i ) + θ · 22 · · · p2r , |θ| ≤ 1.
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...and continues...

We now wish to bound (and then squeeze) the asymptotic density of Q.

For the upper bound we have

lim sup
x→∞

Q(x)

x
≤ lim sup

x→∞

Qr (x)

x
= lim

x→∞

Qr (x)

x
=

r∏
i=1

(1− p−2
i ).

Hence

lim sup
x→∞

Q(x)

x
≤

∏
p

(1− p−2).

We now need to estimate from below. Observe that

Qr (x)− Q(x) ≤ card{n ≤ x : ∃k > r , p2k | n} ≤
∞∑

k=r+1

card{n ≤ x : p2k | n}

=
∞∑

k=r+1

[
x

p2k

]
<

∞∑
k=r+1

x

k2
<

∫ ∞

r

x

t2
dt =

x

r
.
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...and continues

Hence

lim inf
x→∞

Q(x)

x
≥ lim inf

x→∞

Qr (x)

x
− 1

r
=

r∏
k=1

(1− p−2
k )− 1

r
.

Letting r →∞, we obtain

lim inf
x→∞

Q(x)

x
≥

∏
p

(1− p−2).

Therefore

lim
x→∞

Q(x)

x
=

∏
p

(1− p−2) =
6

π2
≈ 0.608.
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