
Homotopy Type Theory 2:
Electric Boogaloo

Will Barnett

26 April 2024

Introduction

Hi.

What is this?
A talk on Homotopy Type Theory—a 21st-century foundation of
mathematics.

Didn’t I already do a talk like this?
Yes, but you’ve forgotten it, haven’t you?

Why should you listen to me?
I understand the basic concepts of HoTT. I do not actually
understand homotopy theory (a different subject).

Introduction

Hi.

What is this?

A talk on Homotopy Type Theory—a 21st-century foundation of
mathematics.

Didn’t I already do a talk like this?
Yes, but you’ve forgotten it, haven’t you?

Why should you listen to me?
I understand the basic concepts of HoTT. I do not actually
understand homotopy theory (a different subject).

Introduction

Hi.

What is this?
A talk on Homotopy Type Theory—a 21st-century foundation of
mathematics.

Didn’t I already do a talk like this?
Yes, but you’ve forgotten it, haven’t you?

Why should you listen to me?
I understand the basic concepts of HoTT. I do not actually
understand homotopy theory (a different subject).

Introduction

Hi.

What is this?
A talk on Homotopy Type Theory—a 21st-century foundation of
mathematics.

Didn’t I already do a talk like this?

Yes, but you’ve forgotten it, haven’t you?

Why should you listen to me?
I understand the basic concepts of HoTT. I do not actually
understand homotopy theory (a different subject).

Introduction

Hi.

What is this?
A talk on Homotopy Type Theory—a 21st-century foundation of
mathematics.

Didn’t I already do a talk like this?
Yes, but you’ve forgotten it, haven’t you?

Why should you listen to me?
I understand the basic concepts of HoTT. I do not actually
understand homotopy theory (a different subject).

Introduction

Hi.

What is this?
A talk on Homotopy Type Theory—a 21st-century foundation of
mathematics.

Didn’t I already do a talk like this?
Yes, but you’ve forgotten it, haven’t you?

Why should you listen to me?

I understand the basic concepts of HoTT. I do not actually
understand homotopy theory (a different subject).

Introduction

Hi.

What is this?
A talk on Homotopy Type Theory—a 21st-century foundation of
mathematics.

Didn’t I already do a talk like this?
Yes, but you’ve forgotten it, haven’t you?

Why should you listen to me?
I understand the basic concepts of HoTT.

I do not actually
understand homotopy theory (a different subject).

Introduction

Hi.

What is this?
A talk on Homotopy Type Theory—a 21st-century foundation of
mathematics.

Didn’t I already do a talk like this?
Yes, but you’ve forgotten it, haven’t you?

Why should you listen to me?
I understand the basic concepts of HoTT. I do not actually
understand homotopy theory (a different subject).

Foundations

What is a foundation of mathematics?

A system for expressing “all of mathematics” in terms of (relatively)
simple building blocks.

Why?
Increase precision and rigour.
Eliminate (certain classes of) errors.
Enables computer proof-checking (formalization).
Lets you slow down to “smell the roses”.

Examples
Set theories (ZFC, NBG, ETCS); type theories (PM, MLTT, HoTT).

Foundations

What is a foundation of mathematics?
A system for expressing “all of mathematics” in terms of (relatively)
simple building blocks.

Why?
Increase precision and rigour.
Eliminate (certain classes of) errors.
Enables computer proof-checking (formalization).
Lets you slow down to “smell the roses”.

Examples
Set theories (ZFC, NBG, ETCS); type theories (PM, MLTT, HoTT).

Foundations

What is a foundation of mathematics?
A system for expressing “all of mathematics” in terms of (relatively)
simple building blocks.

Why?

Increase precision and rigour.
Eliminate (certain classes of) errors.
Enables computer proof-checking (formalization).
Lets you slow down to “smell the roses”.

Examples
Set theories (ZFC, NBG, ETCS); type theories (PM, MLTT, HoTT).

Foundations

What is a foundation of mathematics?
A system for expressing “all of mathematics” in terms of (relatively)
simple building blocks.

Why?
Increase precision and rigour.

Eliminate (certain classes of) errors.
Enables computer proof-checking (formalization).
Lets you slow down to “smell the roses”.

Examples
Set theories (ZFC, NBG, ETCS); type theories (PM, MLTT, HoTT).

Foundations

What is a foundation of mathematics?
A system for expressing “all of mathematics” in terms of (relatively)
simple building blocks.

Why?
Increase precision and rigour.
Eliminate (certain classes of) errors.

Enables computer proof-checking (formalization).
Lets you slow down to “smell the roses”.

Examples
Set theories (ZFC, NBG, ETCS); type theories (PM, MLTT, HoTT).

Foundations

What is a foundation of mathematics?
A system for expressing “all of mathematics” in terms of (relatively)
simple building blocks.

Why?
Increase precision and rigour.
Eliminate (certain classes of) errors.
Enables computer proof-checking (formalization).

Lets you slow down to “smell the roses”.

Examples
Set theories (ZFC, NBG, ETCS); type theories (PM, MLTT, HoTT).

Foundations

What is a foundation of mathematics?
A system for expressing “all of mathematics” in terms of (relatively)
simple building blocks.

Why?
Increase precision and rigour.
Eliminate (certain classes of) errors.
Enables computer proof-checking (formalization).
Lets you slow down to “smell the roses”.

Examples
Set theories (ZFC, NBG, ETCS); type theories (PM, MLTT, HoTT).

Foundations

What is a foundation of mathematics?
A system for expressing “all of mathematics” in terms of (relatively)
simple building blocks.

Why?
Increase precision and rigour.
Eliminate (certain classes of) errors.
Enables computer proof-checking (formalization).
Lets you slow down to “smell the roses”.

Examples
Set theories (ZFC, NBG, ETCS);

type theories (PM, MLTT, HoTT).

Foundations

What is a foundation of mathematics?
A system for expressing “all of mathematics” in terms of (relatively)
simple building blocks.

Why?
Increase precision and rigour.
Eliminate (certain classes of) errors.
Enables computer proof-checking (formalization).
Lets you slow down to “smell the roses”.

Examples
Set theories (ZFC, NBG, ETCS); type theories (PM, MLTT, HoTT).

Set Theory vs Type Theory

In set theory, all mathematical objects are built out of sets.

In type theory, all mathematical objects are terms of a given type.
What are types?
They’re like sets. They can also be like propositions. Or like
structured sets. Or weirder, wilder things...

“Let 𝑛 be a natural number.” ⇒ 𝑛 ∶ ℕ
“Let (𝑎𝑛)∞𝑛=0 be a sequence of reals.” ⇒ 𝑎 ∶ ℕ → ℝ
“Let 𝐺 be a group.” ⇒ 𝐺 ∶ Group
“Suppose that 𝑛 is even.” ⇒ ℎ ∶ is-even 𝑛

But what if 𝐺 is actually a ring? Bad question!
The typing “relation” isn’t a proposition. A mathematical object is
always associated with its type, by its very nature.

Set Theory vs Type Theory

In set theory, all mathematical objects are built out of sets.
In type theory, all mathematical objects are terms of a given type.

What are types?
They’re like sets. They can also be like propositions. Or like
structured sets. Or weirder, wilder things...

“Let 𝑛 be a natural number.” ⇒ 𝑛 ∶ ℕ
“Let (𝑎𝑛)∞𝑛=0 be a sequence of reals.” ⇒ 𝑎 ∶ ℕ → ℝ
“Let 𝐺 be a group.” ⇒ 𝐺 ∶ Group
“Suppose that 𝑛 is even.” ⇒ ℎ ∶ is-even 𝑛

But what if 𝐺 is actually a ring? Bad question!
The typing “relation” isn’t a proposition. A mathematical object is
always associated with its type, by its very nature.

Set Theory vs Type Theory

In set theory, all mathematical objects are built out of sets.
In type theory, all mathematical objects are terms of a given type.
What are types?

They’re like sets. They can also be like propositions. Or like
structured sets. Or weirder, wilder things...

“Let 𝑛 be a natural number.” ⇒ 𝑛 ∶ ℕ
“Let (𝑎𝑛)∞𝑛=0 be a sequence of reals.” ⇒ 𝑎 ∶ ℕ → ℝ
“Let 𝐺 be a group.” ⇒ 𝐺 ∶ Group
“Suppose that 𝑛 is even.” ⇒ ℎ ∶ is-even 𝑛

But what if 𝐺 is actually a ring? Bad question!
The typing “relation” isn’t a proposition. A mathematical object is
always associated with its type, by its very nature.

Set Theory vs Type Theory

In set theory, all mathematical objects are built out of sets.
In type theory, all mathematical objects are terms of a given type.
What are types?
They’re like sets.

They can also be like propositions. Or like
structured sets. Or weirder, wilder things...

“Let 𝑛 be a natural number.” ⇒ 𝑛 ∶ ℕ
“Let (𝑎𝑛)∞𝑛=0 be a sequence of reals.” ⇒ 𝑎 ∶ ℕ → ℝ
“Let 𝐺 be a group.” ⇒ 𝐺 ∶ Group
“Suppose that 𝑛 is even.” ⇒ ℎ ∶ is-even 𝑛

But what if 𝐺 is actually a ring? Bad question!
The typing “relation” isn’t a proposition. A mathematical object is
always associated with its type, by its very nature.

Set Theory vs Type Theory

In set theory, all mathematical objects are built out of sets.
In type theory, all mathematical objects are terms of a given type.
What are types?
They’re like sets. They can also be like propositions.

Or like
structured sets. Or weirder, wilder things...

“Let 𝑛 be a natural number.” ⇒ 𝑛 ∶ ℕ
“Let (𝑎𝑛)∞𝑛=0 be a sequence of reals.” ⇒ 𝑎 ∶ ℕ → ℝ
“Let 𝐺 be a group.” ⇒ 𝐺 ∶ Group
“Suppose that 𝑛 is even.” ⇒ ℎ ∶ is-even 𝑛

But what if 𝐺 is actually a ring? Bad question!
The typing “relation” isn’t a proposition. A mathematical object is
always associated with its type, by its very nature.

Set Theory vs Type Theory

In set theory, all mathematical objects are built out of sets.
In type theory, all mathematical objects are terms of a given type.
What are types?
They’re like sets. They can also be like propositions. Or like
structured sets.

Or weirder, wilder things...

“Let 𝑛 be a natural number.” ⇒ 𝑛 ∶ ℕ
“Let (𝑎𝑛)∞𝑛=0 be a sequence of reals.” ⇒ 𝑎 ∶ ℕ → ℝ
“Let 𝐺 be a group.” ⇒ 𝐺 ∶ Group
“Suppose that 𝑛 is even.” ⇒ ℎ ∶ is-even 𝑛

But what if 𝐺 is actually a ring? Bad question!
The typing “relation” isn’t a proposition. A mathematical object is
always associated with its type, by its very nature.

Set Theory vs Type Theory

In set theory, all mathematical objects are built out of sets.
In type theory, all mathematical objects are terms of a given type.
What are types?
They’re like sets. They can also be like propositions. Or like
structured sets. Or weirder, wilder things...

“Let 𝑛 be a natural number.” ⇒ 𝑛 ∶ ℕ
“Let (𝑎𝑛)∞𝑛=0 be a sequence of reals.” ⇒ 𝑎 ∶ ℕ → ℝ
“Let 𝐺 be a group.” ⇒ 𝐺 ∶ Group
“Suppose that 𝑛 is even.” ⇒ ℎ ∶ is-even 𝑛

But what if 𝐺 is actually a ring? Bad question!
The typing “relation” isn’t a proposition. A mathematical object is
always associated with its type, by its very nature.

Set Theory vs Type Theory

In set theory, all mathematical objects are built out of sets.
In type theory, all mathematical objects are terms of a given type.
What are types?
They’re like sets. They can also be like propositions. Or like
structured sets. Or weirder, wilder things...

“Let 𝑛 be a natural number.” ⇒ 𝑛 ∶ ℕ

“Let (𝑎𝑛)∞𝑛=0 be a sequence of reals.” ⇒ 𝑎 ∶ ℕ → ℝ
“Let 𝐺 be a group.” ⇒ 𝐺 ∶ Group
“Suppose that 𝑛 is even.” ⇒ ℎ ∶ is-even 𝑛

But what if 𝐺 is actually a ring? Bad question!
The typing “relation” isn’t a proposition. A mathematical object is
always associated with its type, by its very nature.

Set Theory vs Type Theory

In set theory, all mathematical objects are built out of sets.
In type theory, all mathematical objects are terms of a given type.
What are types?
They’re like sets. They can also be like propositions. Or like
structured sets. Or weirder, wilder things...

“Let 𝑛 be a natural number.” ⇒ 𝑛 ∶ ℕ
“Let (𝑎𝑛)∞𝑛=0 be a sequence of reals.” ⇒ 𝑎 ∶ ℕ → ℝ

“Let 𝐺 be a group.” ⇒ 𝐺 ∶ Group
“Suppose that 𝑛 is even.” ⇒ ℎ ∶ is-even 𝑛

But what if 𝐺 is actually a ring? Bad question!
The typing “relation” isn’t a proposition. A mathematical object is
always associated with its type, by its very nature.

Set Theory vs Type Theory

In set theory, all mathematical objects are built out of sets.
In type theory, all mathematical objects are terms of a given type.
What are types?
They’re like sets. They can also be like propositions. Or like
structured sets. Or weirder, wilder things...

“Let 𝑛 be a natural number.” ⇒ 𝑛 ∶ ℕ
“Let (𝑎𝑛)∞𝑛=0 be a sequence of reals.” ⇒ 𝑎 ∶ ℕ → ℝ
“Let 𝐺 be a group.” ⇒ 𝐺 ∶ Group

“Suppose that 𝑛 is even.” ⇒ ℎ ∶ is-even 𝑛

But what if 𝐺 is actually a ring? Bad question!
The typing “relation” isn’t a proposition. A mathematical object is
always associated with its type, by its very nature.

Set Theory vs Type Theory

In set theory, all mathematical objects are built out of sets.
In type theory, all mathematical objects are terms of a given type.
What are types?
They’re like sets. They can also be like propositions. Or like
structured sets. Or weirder, wilder things...

“Let 𝑛 be a natural number.” ⇒ 𝑛 ∶ ℕ
“Let (𝑎𝑛)∞𝑛=0 be a sequence of reals.” ⇒ 𝑎 ∶ ℕ → ℝ
“Let 𝐺 be a group.” ⇒ 𝐺 ∶ Group
“Suppose that 𝑛 is even.” ⇒ ℎ ∶ is-even 𝑛

But what if 𝐺 is actually a ring? Bad question!
The typing “relation” isn’t a proposition. A mathematical object is
always associated with its type, by its very nature.

Set Theory vs Type Theory

In set theory, all mathematical objects are built out of sets.
In type theory, all mathematical objects are terms of a given type.
What are types?
They’re like sets. They can also be like propositions. Or like
structured sets. Or weirder, wilder things...

“Let 𝑛 be a natural number.” ⇒ 𝑛 ∶ ℕ
“Let (𝑎𝑛)∞𝑛=0 be a sequence of reals.” ⇒ 𝑎 ∶ ℕ → ℝ
“Let 𝐺 be a group.” ⇒ 𝐺 ∶ Group
“Suppose that 𝑛 is even.” ⇒ ℎ ∶ is-even 𝑛

But what if 𝐺 is actually a ring?

Bad question!
The typing “relation” isn’t a proposition. A mathematical object is
always associated with its type, by its very nature.

Set Theory vs Type Theory

In set theory, all mathematical objects are built out of sets.
In type theory, all mathematical objects are terms of a given type.
What are types?
They’re like sets. They can also be like propositions. Or like
structured sets. Or weirder, wilder things...

“Let 𝑛 be a natural number.” ⇒ 𝑛 ∶ ℕ
“Let (𝑎𝑛)∞𝑛=0 be a sequence of reals.” ⇒ 𝑎 ∶ ℕ → ℝ
“Let 𝐺 be a group.” ⇒ 𝐺 ∶ Group
“Suppose that 𝑛 is even.” ⇒ ℎ ∶ is-even 𝑛

But what if 𝐺 is actually a ring? Bad question!

The typing “relation” isn’t a proposition. A mathematical object is
always associated with its type, by its very nature.

Set Theory vs Type Theory

In set theory, all mathematical objects are built out of sets.
In type theory, all mathematical objects are terms of a given type.
What are types?
They’re like sets. They can also be like propositions. Or like
structured sets. Or weirder, wilder things...

“Let 𝑛 be a natural number.” ⇒ 𝑛 ∶ ℕ
“Let (𝑎𝑛)∞𝑛=0 be a sequence of reals.” ⇒ 𝑎 ∶ ℕ → ℝ
“Let 𝐺 be a group.” ⇒ 𝐺 ∶ Group
“Suppose that 𝑛 is even.” ⇒ ℎ ∶ is-even 𝑛

But what if 𝐺 is actually a ring? Bad question!
The typing “relation” isn’t a proposition. A mathematical object is
always associated with its type, by its very nature.

Dependent Function Types

Given types 𝐴, 𝐵, we can form the function type 𝐴 → 𝐵.

The terms of a function type look like this:

𝜆𝑛.𝑛 + 69 ∶ ℕ → ℕ ((𝑛 ↦ 𝑛 + 420) ∶ ℕ → ℕ).

This can be generalized to allow the type of the codomain to depend
on an element of the domain. For example, the type of “identity
matrix” (with entries from ℝ) is

𝐼 ∶ (𝑛 ∶ ℕ) → 𝑀𝑛×𝑛(ℝ) (𝐼 ∶∏
𝑛∶ℕ

𝑀𝑛×𝑛(ℝ)).

This yields such believable results as 𝐼3 ∶ 𝑀3×3(ℝ).

Dependent Function Types

Given types 𝐴, 𝐵, we can form the function type 𝐴 → 𝐵.
The terms of a function type look like this:

𝜆𝑛.𝑛 + 69 ∶ ℕ → ℕ ((𝑛 ↦ 𝑛 + 420) ∶ ℕ → ℕ).

This can be generalized to allow the type of the codomain to depend
on an element of the domain. For example, the type of “identity
matrix” (with entries from ℝ) is

𝐼 ∶ (𝑛 ∶ ℕ) → 𝑀𝑛×𝑛(ℝ) (𝐼 ∶∏
𝑛∶ℕ

𝑀𝑛×𝑛(ℝ)).

This yields such believable results as 𝐼3 ∶ 𝑀3×3(ℝ).

Dependent Function Types

Given types 𝐴, 𝐵, we can form the function type 𝐴 → 𝐵.
The terms of a function type look like this:

𝜆𝑛.𝑛 + 69 ∶ ℕ → ℕ ((𝑛 ↦ 𝑛 + 420) ∶ ℕ → ℕ).

This can be generalized to allow the type of the codomain to depend
on an element of the domain. For example, the type of “identity
matrix” (with entries from ℝ) is

𝐼 ∶ (𝑛 ∶ ℕ) → 𝑀𝑛×𝑛(ℝ) (𝐼 ∶∏
𝑛∶ℕ

𝑀𝑛×𝑛(ℝ)).

This yields such believable results as 𝐼3 ∶ 𝑀3×3(ℝ).

Dependent Function Types

Given types 𝐴, 𝐵, we can form the function type 𝐴 → 𝐵.
The terms of a function type look like this:

𝜆𝑛.𝑛 + 69 ∶ ℕ → ℕ ((𝑛 ↦ 𝑛 + 420) ∶ ℕ → ℕ).

This can be generalized to allow the type of the codomain to depend
on an element of the domain. For example, the type of “identity
matrix” (with entries from ℝ) is

𝐼 ∶ (𝑛 ∶ ℕ) → 𝑀𝑛×𝑛(ℝ) (𝐼 ∶∏
𝑛∶ℕ

𝑀𝑛×𝑛(ℝ)).

This yields such believable results as 𝐼3 ∶ 𝑀3×3(ℝ).

Dependent Pair Types

Given types 𝐴, 𝐵, we can form the pair type 𝐴 × 𝐵 (the
type-theoretic version of the Cartesian product).

The terms of a pair type look like this:

(𝜋, +) ∶ ℝ × (ℕ × ℕ → ℕ).

This can be generalized to a dependent pair type. For example, to
represent arbitrary tuples of rational numbers:

(3, (169 , −
1
420, 666)) ∶ (𝑛 ∶ ℕ) × ℚ𝑛 ((0, ()) ∶ ∑

𝑛∶ℕ
ℚ𝑛).

Dependent Pair Types

Given types 𝐴, 𝐵, we can form the pair type 𝐴 × 𝐵 (the
type-theoretic version of the Cartesian product).
The terms of a pair type look like this:

(𝜋, +) ∶ ℝ × (ℕ × ℕ → ℕ).

This can be generalized to a dependent pair type. For example, to
represent arbitrary tuples of rational numbers:

(3, (169 , −
1
420, 666)) ∶ (𝑛 ∶ ℕ) × ℚ𝑛 ((0, ()) ∶ ∑

𝑛∶ℕ
ℚ𝑛).

Dependent Pair Types

Given types 𝐴, 𝐵, we can form the pair type 𝐴 × 𝐵 (the
type-theoretic version of the Cartesian product).
The terms of a pair type look like this:

(𝜋, +) ∶ ℝ × (ℕ × ℕ → ℕ).

This can be generalized to a dependent pair type. For example, to
represent arbitrary tuples of rational numbers:

(3, (169 , −
1
420, 666)) ∶ (𝑛 ∶ ℕ) × ℚ𝑛 ((0, ()) ∶ ∑

𝑛∶ℕ
ℚ𝑛).

Universe Types

Everything has has a type, including types themselves.

In most formulations of type theory, a hierarcy of universes is used
to represent this:

ℕ ∶ Type, Type ∶ Type1, Type1 ∶ Type2,… .

Often, 𝑈𝑖 is used instead of Type𝑖 (note that 𝑖 is ameta-theoretic
natural number).
It is a bad idea to set up a type theory where Type ∶ Type, due to the
type-theoretic version of Russel’s paradox (Girard’s paradox).

Universe Types

Everything has has a type, including types themselves.
In most formulations of type theory, a hierarcy of universes is used
to represent this:

ℕ ∶ Type, Type ∶ Type1, Type1 ∶ Type2,… .

Often, 𝑈𝑖 is used instead of Type𝑖 (note that 𝑖 is ameta-theoretic
natural number).
It is a bad idea to set up a type theory where Type ∶ Type, due to the
type-theoretic version of Russel’s paradox (Girard’s paradox).

Universe Types

Everything has has a type, including types themselves.
In most formulations of type theory, a hierarcy of universes is used
to represent this:

ℕ ∶ Type, Type ∶ Type1, Type1 ∶ Type2,… .

Often, 𝑈𝑖 is used instead of Type𝑖 (note that 𝑖 is ameta-theoretic
natural number).

It is a bad idea to set up a type theory where Type ∶ Type, due to the
type-theoretic version of Russel’s paradox (Girard’s paradox).

Universe Types

Everything has has a type, including types themselves.
In most formulations of type theory, a hierarcy of universes is used
to represent this:

ℕ ∶ Type, Type ∶ Type1, Type1 ∶ Type2,… .

Often, 𝑈𝑖 is used instead of Type𝑖 (note that 𝑖 is ameta-theoretic
natural number).
It is a bad idea to set up a type theory where Type ∶ Type, due to the
type-theoretic version of Russel’s paradox (Girard’s paradox).

Propositions as Types

The primary mathematical activity in type theory is constructing a
term of a given type.

Proving a theorem is a special case of this, if we interpret
propositions as types.
What are the terms of these types? Proofs of the proposition!

Implication is the function type: 𝑃 → 𝑄.
Conjunction is the pair type: 𝑃 × 𝑄.
Universal quantification is the dependent function type:
(𝑥 ∶ 𝐴) → 𝑃(𝑥).
Disjunction and existential quantification are best discussed
after propositional truncation has been introduced.

Propositions as Types

The primary mathematical activity in type theory is constructing a
term of a given type.
Proving a theorem is a special case of this, if we interpret
propositions as types.

What are the terms of these types? Proofs of the proposition!
Implication is the function type: 𝑃 → 𝑄.
Conjunction is the pair type: 𝑃 × 𝑄.
Universal quantification is the dependent function type:
(𝑥 ∶ 𝐴) → 𝑃(𝑥).
Disjunction and existential quantification are best discussed
after propositional truncation has been introduced.

Propositions as Types

The primary mathematical activity in type theory is constructing a
term of a given type.
Proving a theorem is a special case of this, if we interpret
propositions as types.
What are the terms of these types?

Proofs of the proposition!
Implication is the function type: 𝑃 → 𝑄.
Conjunction is the pair type: 𝑃 × 𝑄.
Universal quantification is the dependent function type:
(𝑥 ∶ 𝐴) → 𝑃(𝑥).
Disjunction and existential quantification are best discussed
after propositional truncation has been introduced.

Propositions as Types

The primary mathematical activity in type theory is constructing a
term of a given type.
Proving a theorem is a special case of this, if we interpret
propositions as types.
What are the terms of these types? Proofs of the proposition!

Implication is the function type: 𝑃 → 𝑄.
Conjunction is the pair type: 𝑃 × 𝑄.
Universal quantification is the dependent function type:
(𝑥 ∶ 𝐴) → 𝑃(𝑥).
Disjunction and existential quantification are best discussed
after propositional truncation has been introduced.

Propositions as Types

The primary mathematical activity in type theory is constructing a
term of a given type.
Proving a theorem is a special case of this, if we interpret
propositions as types.
What are the terms of these types? Proofs of the proposition!

Implication is the function type: 𝑃 → 𝑄.

Conjunction is the pair type: 𝑃 × 𝑄.
Universal quantification is the dependent function type:
(𝑥 ∶ 𝐴) → 𝑃(𝑥).
Disjunction and existential quantification are best discussed
after propositional truncation has been introduced.

Propositions as Types

The primary mathematical activity in type theory is constructing a
term of a given type.
Proving a theorem is a special case of this, if we interpret
propositions as types.
What are the terms of these types? Proofs of the proposition!

Implication is the function type: 𝑃 → 𝑄.
Conjunction is the pair type: 𝑃 × 𝑄.

Universal quantification is the dependent function type:
(𝑥 ∶ 𝐴) → 𝑃(𝑥).
Disjunction and existential quantification are best discussed
after propositional truncation has been introduced.

Propositions as Types

The primary mathematical activity in type theory is constructing a
term of a given type.
Proving a theorem is a special case of this, if we interpret
propositions as types.
What are the terms of these types? Proofs of the proposition!

Implication is the function type: 𝑃 → 𝑄.
Conjunction is the pair type: 𝑃 × 𝑄.
Universal quantification is the dependent function type:
(𝑥 ∶ 𝐴) → 𝑃(𝑥).

Disjunction and existential quantification are best discussed
after propositional truncation has been introduced.

Propositions as Types

The primary mathematical activity in type theory is constructing a
term of a given type.
Proving a theorem is a special case of this, if we interpret
propositions as types.
What are the terms of these types? Proofs of the proposition!

Implication is the function type: 𝑃 → 𝑄.
Conjunction is the pair type: 𝑃 × 𝑄.
Universal quantification is the dependent function type:
(𝑥 ∶ 𝐴) → 𝑃(𝑥).
Disjunction and existential quantification are best discussed
after propositional truncation has been introduced.

Equality

The behaviour of the identity type = (sometimes called Id) is what
sets HoTT apart from bare Martin Löf Type Theory.

More about this type later, but the basic information is: for a given
type 𝐴,

=𝐴∶ 𝐴 → 𝐴 → Type, refl𝐴 ∶ (𝑎 ∶ 𝐴) → 𝑎 =𝐴 𝑎.

The type parameter 𝐴 is often omitted, since it can be inferred from
context.
Note that currying is used; this is conventional in HoTT.
The identity type is also called the path type; the homotopical
intuition is that the terms of 𝑎 =𝐴 𝑏 are like paths from 𝑎 to 𝑏 in the
space 𝐴.

Equality

The behaviour of the identity type = (sometimes called Id) is what
sets HoTT apart from bare Martin Löf Type Theory.
More about this type later, but the basic information is: for a given
type 𝐴,

=𝐴∶ 𝐴 → 𝐴 → Type, refl𝐴 ∶ (𝑎 ∶ 𝐴) → 𝑎 =𝐴 𝑎.

The type parameter 𝐴 is often omitted, since it can be inferred from
context.
Note that currying is used; this is conventional in HoTT.
The identity type is also called the path type; the homotopical
intuition is that the terms of 𝑎 =𝐴 𝑏 are like paths from 𝑎 to 𝑏 in the
space 𝐴.

Equality

The behaviour of the identity type = (sometimes called Id) is what
sets HoTT apart from bare Martin Löf Type Theory.
More about this type later, but the basic information is: for a given
type 𝐴,

=𝐴∶ 𝐴 → 𝐴 → Type, refl𝐴 ∶ (𝑎 ∶ 𝐴) → 𝑎 =𝐴 𝑎.

The type parameter 𝐴 is often omitted, since it can be inferred from
context.

Note that currying is used; this is conventional in HoTT.
The identity type is also called the path type; the homotopical
intuition is that the terms of 𝑎 =𝐴 𝑏 are like paths from 𝑎 to 𝑏 in the
space 𝐴.

Equality

The behaviour of the identity type = (sometimes called Id) is what
sets HoTT apart from bare Martin Löf Type Theory.
More about this type later, but the basic information is: for a given
type 𝐴,

=𝐴∶ 𝐴 → 𝐴 → Type, refl𝐴 ∶ (𝑎 ∶ 𝐴) → 𝑎 =𝐴 𝑎.

The type parameter 𝐴 is often omitted, since it can be inferred from
context.
Note that currying is used; this is conventional in HoTT.

The identity type is also called the path type; the homotopical
intuition is that the terms of 𝑎 =𝐴 𝑏 are like paths from 𝑎 to 𝑏 in the
space 𝐴.

Equality

The behaviour of the identity type = (sometimes called Id) is what
sets HoTT apart from bare Martin Löf Type Theory.
More about this type later, but the basic information is: for a given
type 𝐴,

=𝐴∶ 𝐴 → 𝐴 → Type, refl𝐴 ∶ (𝑎 ∶ 𝐴) → 𝑎 =𝐴 𝑎.

The type parameter 𝐴 is often omitted, since it can be inferred from
context.
Note that currying is used; this is conventional in HoTT.
The identity type is also called the path type; the homotopical
intuition is that the terms of 𝑎 =𝐴 𝑏 are like paths from 𝑎 to 𝑏 in the
space 𝐴.

Using Equality

Functions out of the identity type can be defined by path induction
(briefly explained later). Thusly, equality can be proved to be
symmetric and transitive: for any type 𝐴,

sym ∶ (𝑎, 𝑏 ∶ 𝐴) → 𝑎 = 𝑏 → 𝑏 = 𝑎,
trans ∶ (𝑎, 𝑏, 𝑐 ∶ 𝐴) → 𝑎 = 𝑏 → 𝑏 = 𝑐 → 𝑎 = 𝑐.

These proofs of symmetry and transitivity are not just mere
properties, but themselves have structure (in this case, that of an
∞-groupoid, a higher-categorical version of a group).
Some other useful operations: for any types 𝐴, 𝐵,

ap ∶ (𝑓 ∶ 𝐴 → 𝐵) → (𝑥, 𝑦 ∶ 𝐴) → 𝑥 = 𝑦 → 𝑓(𝑥) = 𝑓(𝑦),
transport ∶ 𝐴 = 𝐵 → 𝐴 → 𝐵.

Using Equality

Functions out of the identity type can be defined by path induction
(briefly explained later). Thusly, equality can be proved to be
symmetric and transitive: for any type 𝐴,

sym ∶ (𝑎, 𝑏 ∶ 𝐴) → 𝑎 = 𝑏 → 𝑏 = 𝑎,
trans ∶ (𝑎, 𝑏, 𝑐 ∶ 𝐴) → 𝑎 = 𝑏 → 𝑏 = 𝑐 → 𝑎 = 𝑐.

These proofs of symmetry and transitivity are not just mere
properties, but themselves have structure (in this case, that of an
∞-groupoid, a higher-categorical version of a group).

Some other useful operations: for any types 𝐴, 𝐵,

ap ∶ (𝑓 ∶ 𝐴 → 𝐵) → (𝑥, 𝑦 ∶ 𝐴) → 𝑥 = 𝑦 → 𝑓(𝑥) = 𝑓(𝑦),
transport ∶ 𝐴 = 𝐵 → 𝐴 → 𝐵.

Using Equality

Functions out of the identity type can be defined by path induction
(briefly explained later). Thusly, equality can be proved to be
symmetric and transitive: for any type 𝐴,

sym ∶ (𝑎, 𝑏 ∶ 𝐴) → 𝑎 = 𝑏 → 𝑏 = 𝑎,
trans ∶ (𝑎, 𝑏, 𝑐 ∶ 𝐴) → 𝑎 = 𝑏 → 𝑏 = 𝑐 → 𝑎 = 𝑐.

These proofs of symmetry and transitivity are not just mere
properties, but themselves have structure (in this case, that of an
∞-groupoid, a higher-categorical version of a group).
Some other useful operations: for any types 𝐴, 𝐵,

ap ∶ (𝑓 ∶ 𝐴 → 𝐵) → (𝑥, 𝑦 ∶ 𝐴) → 𝑥 = 𝑦 → 𝑓(𝑥) = 𝑓(𝑦),
transport ∶ 𝐴 = 𝐵 → 𝐴 → 𝐵.

Indiscernability of Identicals

Equal things should satisfy the same properties. This can be proved
using the theorems/operations on the previous slide.

Given a type 𝐴, and 𝑥, 𝑦 ∶ 𝐴, we define the theorem of
indiscernability of identicals

iden-indis ∶ 𝑥 = 𝑦 → ((𝑃 ∶ 𝐴 → Type) → 𝑃(𝑥) → 𝑃(𝑦))
iden-indis 𝑝 𝑃 ℎ ≔ transport ap𝑃(𝑝) ℎ

One may also define the identity of indiscernables:

indis-iden ∶ ((𝑃 ∶ 𝐴 → Type) → 𝑃(𝑥) → 𝑃(𝑦)) → 𝑥 = 𝑦
indis-iden ℎ ≔ ℎ (𝑧 ↦ 𝑥 = 𝑧) refl(𝑥)

Indiscernability of Identicals

Equal things should satisfy the same properties. This can be proved
using the theorems/operations on the previous slide.
Given a type 𝐴, and 𝑥, 𝑦 ∶ 𝐴, we define the theorem of
indiscernability of identicals

iden-indis ∶ 𝑥 = 𝑦 → ((𝑃 ∶ 𝐴 → Type) → 𝑃(𝑥) → 𝑃(𝑦))
iden-indis 𝑝 𝑃 ℎ ≔ transport ap𝑃(𝑝) ℎ

One may also define the identity of indiscernables:

indis-iden ∶ ((𝑃 ∶ 𝐴 → Type) → 𝑃(𝑥) → 𝑃(𝑦)) → 𝑥 = 𝑦
indis-iden ℎ ≔ ℎ (𝑧 ↦ 𝑥 = 𝑧) refl(𝑥)

Indiscernability of Identicals

Equal things should satisfy the same properties. This can be proved
using the theorems/operations on the previous slide.
Given a type 𝐴, and 𝑥, 𝑦 ∶ 𝐴, we define the theorem of
indiscernability of identicals

iden-indis ∶ 𝑥 = 𝑦 → ((𝑃 ∶ 𝐴 → Type) → 𝑃(𝑥) → 𝑃(𝑦))
iden-indis 𝑝 𝑃 ℎ ≔ transport ap𝑃(𝑝) ℎ

One may also define the identity of indiscernables:

indis-iden ∶ ((𝑃 ∶ 𝐴 → Type) → 𝑃(𝑥) → 𝑃(𝑦)) → 𝑥 = 𝑦
indis-iden ℎ ≔ ℎ (𝑧 ↦ 𝑥 = 𝑧) refl(𝑥)

Inductive Types

Where do types like ℕ come from? They are “freely generated” from
“constructors”. The “inductive definition” of ℕ is

ℕ ∶ Type, 0 ∶ ℕ, 𝑆 ∶ ℕ → ℕ.

The idea is that all natural numbers are “built up” from these
constructors.
Every natural number has a “canonical form”, like 2 ≡ 𝑆(𝑆(0)).

Despite the high quotation mark-density, this can be made precise;
the validity of similar inductive definitions can be checked by a
mechanical process.

Inductive Types

Where do types like ℕ come from? They are “freely generated” from
“constructors”. The “inductive definition” of ℕ is

ℕ ∶ Type, 0 ∶ ℕ, 𝑆 ∶ ℕ → ℕ.

The idea is that all natural numbers are “built up” from these
constructors.

Every natural number has a “canonical form”, like 2 ≡ 𝑆(𝑆(0)).

Despite the high quotation mark-density, this can be made precise;
the validity of similar inductive definitions can be checked by a
mechanical process.

Inductive Types

Where do types like ℕ come from? They are “freely generated” from
“constructors”. The “inductive definition” of ℕ is

ℕ ∶ Type, 0 ∶ ℕ, 𝑆 ∶ ℕ → ℕ.

The idea is that all natural numbers are “built up” from these
constructors.
Every natural number has a “canonical form”, like 2 ≡ 𝑆(𝑆(0)).

Despite the high quotation mark-density, this can be made precise;
the validity of similar inductive definitions can be checked by a
mechanical process.

Inductive Types

Where do types like ℕ come from? They are “freely generated” from
“constructors”. The “inductive definition” of ℕ is

ℕ ∶ Type, 0 ∶ ℕ, 𝑆 ∶ ℕ → ℕ.

The idea is that all natural numbers are “built up” from these
constructors.
Every natural number has a “canonical form”, like 2 ≡ 𝑆(𝑆(0)).

Despite the high quotation mark-density, this can be made precise;
the validity of similar inductive definitions can be checked by a
mechanical process.

How to use Inductive Types

Functions out of inductive types are defined by their behaviour on
constructors.

It is permissible to use previously-defined values of the function on
“structurally smaller” values.
Defining a function on the natural numbers by recursion, and
proving a property of natural numbers by induction, are special
cases of this “elimination principle”.
Explicitly, this elimination principle can be expressed in type theory
itself as:

ℕ-elim ∶ (𝑃 ∶ ℕ → Type) → 𝑃(0) → ((𝑛 ∶ ℕ) → 𝑃(𝑛) → 𝑃(𝑆(𝑛)))
→ (𝑛 ∶ ℕ) → 𝑃(𝑛).

How to use Inductive Types

Functions out of inductive types are defined by their behaviour on
constructors.
It is permissible to use previously-defined values of the function on
“structurally smaller” values.

Defining a function on the natural numbers by recursion, and
proving a property of natural numbers by induction, are special
cases of this “elimination principle”.
Explicitly, this elimination principle can be expressed in type theory
itself as:

ℕ-elim ∶ (𝑃 ∶ ℕ → Type) → 𝑃(0) → ((𝑛 ∶ ℕ) → 𝑃(𝑛) → 𝑃(𝑆(𝑛)))
→ (𝑛 ∶ ℕ) → 𝑃(𝑛).

How to use Inductive Types

Functions out of inductive types are defined by their behaviour on
constructors.
It is permissible to use previously-defined values of the function on
“structurally smaller” values.
Defining a function on the natural numbers by recursion, and
proving a property of natural numbers by induction, are special
cases of this “elimination principle”.

Explicitly, this elimination principle can be expressed in type theory
itself as:

ℕ-elim ∶ (𝑃 ∶ ℕ → Type) → 𝑃(0) → ((𝑛 ∶ ℕ) → 𝑃(𝑛) → 𝑃(𝑆(𝑛)))
→ (𝑛 ∶ ℕ) → 𝑃(𝑛).

How to use Inductive Types

Functions out of inductive types are defined by their behaviour on
constructors.
It is permissible to use previously-defined values of the function on
“structurally smaller” values.
Defining a function on the natural numbers by recursion, and
proving a property of natural numbers by induction, are special
cases of this “elimination principle”.
Explicitly, this elimination principle can be expressed in type theory
itself as:

ℕ-elim ∶ (𝑃 ∶ ℕ → Type) → 𝑃(0) → ((𝑛 ∶ ℕ) → 𝑃(𝑛) → 𝑃(𝑆(𝑛)))
→ (𝑛 ∶ ℕ) → 𝑃(𝑛).

Elimination Examples

Here is a definition by pattern matching (equivalent to eliminator
use) of + on ℕ:

+ ∶ ℕ → ℕ → ℕ;
𝑎 + 0 ≔ 𝑎;

𝑎 + 𝑆(𝑏) ≔ 𝑆(𝑎 + 𝑏).

Here is an inductive proof that + is associative:

+-is-assoc ∶ (𝑎, 𝑏, 𝑐 ∶ ℕ) → 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐;
+-is-assoc 𝑎 𝑏 0 ≔ refl(𝑎 + 𝑏);

+-is-assoc 𝑎 𝑏 𝑆(𝑐) ≔ ap𝑆(+-is-assoc 𝑎 𝑏 𝑐).

Elimination Examples

Here is a definition by pattern matching (equivalent to eliminator
use) of + on ℕ:

+ ∶ ℕ → ℕ → ℕ;
𝑎 + 0 ≔ 𝑎;

𝑎 + 𝑆(𝑏) ≔ 𝑆(𝑎 + 𝑏).

Here is an inductive proof that + is associative:

+-is-assoc ∶ (𝑎, 𝑏, 𝑐 ∶ ℕ) → 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐;
+-is-assoc 𝑎 𝑏 0 ≔ refl(𝑎 + 𝑏);

+-is-assoc 𝑎 𝑏 𝑆(𝑐) ≔ ap𝑆(+-is-assoc 𝑎 𝑏 𝑐).

Other Inductive Types

The empty and unit types (logical false and true):

𝟘 ∶ Type, 𝟙 ∶ Type, ∗ ∶ 𝟙.

The disjoint union of two types 𝐴, 𝐵:

𝐴 + 𝐵 ∶ Type, left ∶ 𝐴 → 𝐴 + 𝐵, right ∶ 𝐵 → 𝐴 + 𝐵.

The (dependent) sum type and the identity type can also be
constructed as inductive types.
In HoTT, higher inductive types can be defined, which can include
path constructors as well as the point constructors that we have
seen so far.

Other Inductive Types

The empty and unit types (logical false and true):

𝟘 ∶ Type, 𝟙 ∶ Type, ∗ ∶ 𝟙.

The disjoint union of two types 𝐴, 𝐵:

𝐴 + 𝐵 ∶ Type, left ∶ 𝐴 → 𝐴 + 𝐵, right ∶ 𝐵 → 𝐴 + 𝐵.

The (dependent) sum type and the identity type can also be
constructed as inductive types.
In HoTT, higher inductive types can be defined, which can include
path constructors as well as the point constructors that we have
seen so far.

Other Inductive Types

The empty and unit types (logical false and true):

𝟘 ∶ Type, 𝟙 ∶ Type, ∗ ∶ 𝟙.

The disjoint union of two types 𝐴, 𝐵:

𝐴 + 𝐵 ∶ Type, left ∶ 𝐴 → 𝐴 + 𝐵, right ∶ 𝐵 → 𝐴 + 𝐵.

The (dependent) sum type and the identity type can also be
constructed as inductive types.

In HoTT, higher inductive types can be defined, which can include
path constructors as well as the point constructors that we have
seen so far.

Other Inductive Types

The empty and unit types (logical false and true):

𝟘 ∶ Type, 𝟙 ∶ Type, ∗ ∶ 𝟙.

The disjoint union of two types 𝐴, 𝐵:

𝐴 + 𝐵 ∶ Type, left ∶ 𝐴 → 𝐴 + 𝐵, right ∶ 𝐵 → 𝐴 + 𝐵.

The (dependent) sum type and the identity type can also be
constructed as inductive types.
In HoTT, higher inductive types can be defined, which can include
path constructors as well as the point constructors that we have
seen so far.

Path Induction
The identity (path) type can itself be viewed as an inductive type,
“generated by refl”.

Its corresponding induction principle is known as path induction:
given a type 𝐴, there is a canonical term

J ∶ (𝐶 ∶ ((𝑥, 𝑦 ∶ 𝐴) → 𝑥 = 𝑦 → Type)) → 𝐶 𝑥 𝑥 refl(𝑥) →
→ (𝑥, 𝑦 ∶ 𝐴) → (𝑝 ∶ 𝑥 = 𝑦) → 𝐶 𝑥 𝑦 𝑝

There is also a version of this principle, which holds an endpoint
fixed, based path induction: given a type 𝐴 and a term 𝑎 ∶ 𝐴, there is
a canonical term

J′ ∶ (𝐶 ∶ ((𝑥 ∶ 𝐴) → 𝑎 = 𝑥 → Type)) → 𝐶 𝑥 refl(𝑥) →
→ (𝑥 ∶ 𝐴) → (𝑝 ∶ 𝑎 = 𝑥) → 𝐶 𝑥 𝑝

Path Induction
The identity (path) type can itself be viewed as an inductive type,
“generated by refl”.
Its corresponding induction principle is known as path induction:
given a type 𝐴, there is a canonical term

J ∶ (𝐶 ∶ ((𝑥, 𝑦 ∶ 𝐴) → 𝑥 = 𝑦 → Type)) → 𝐶 𝑥 𝑥 refl(𝑥) →
→ (𝑥, 𝑦 ∶ 𝐴) → (𝑝 ∶ 𝑥 = 𝑦) → 𝐶 𝑥 𝑦 𝑝

There is also a version of this principle, which holds an endpoint
fixed, based path induction: given a type 𝐴 and a term 𝑎 ∶ 𝐴, there is
a canonical term

J′ ∶ (𝐶 ∶ ((𝑥 ∶ 𝐴) → 𝑎 = 𝑥 → Type)) → 𝐶 𝑥 refl(𝑥) →
→ (𝑥 ∶ 𝐴) → (𝑝 ∶ 𝑎 = 𝑥) → 𝐶 𝑥 𝑝

Path Induction
The identity (path) type can itself be viewed as an inductive type,
“generated by refl”.
Its corresponding induction principle is known as path induction:
given a type 𝐴, there is a canonical term

J ∶ (𝐶 ∶ ((𝑥, 𝑦 ∶ 𝐴) → 𝑥 = 𝑦 → Type)) → 𝐶 𝑥 𝑥 refl(𝑥) →
→ (𝑥, 𝑦 ∶ 𝐴) → (𝑝 ∶ 𝑥 = 𝑦) → 𝐶 𝑥 𝑦 𝑝

There is also a version of this principle, which holds an endpoint
fixed, based path induction: given a type 𝐴 and a term 𝑎 ∶ 𝐴, there is
a canonical term

J′ ∶ (𝐶 ∶ ((𝑥 ∶ 𝐴) → 𝑎 = 𝑥 → Type)) → 𝐶 𝑥 refl(𝑥) →
→ (𝑥 ∶ 𝐴) → (𝑝 ∶ 𝑎 = 𝑥) → 𝐶 𝑥 𝑝

H-Levels

So far, only vanilla MLTT has been covered.

The h-level of a type is the number of times that =must be iterated
before it trivializes.
For historical reasons, people normally start counting at −2, but
that is obviously ridiculous, so I will count from 0.
Being a 0-type (a type with h-level 0) means being contractible,
which is expressed as:

is-contr ∶ Type→ Type,
is-contr(𝐴) ≔ (𝑥 ∶ 𝐴) × (𝑦 ∶ 𝐴) → 𝑥 = 𝑦.

Rest assured that the identity type of a contractible type is itself
contractible.

H-Levels

So far, only vanilla MLTT has been covered.
The h-level of a type is the number of times that =must be iterated
before it trivializes.

For historical reasons, people normally start counting at −2, but
that is obviously ridiculous, so I will count from 0.
Being a 0-type (a type with h-level 0) means being contractible,
which is expressed as:

is-contr ∶ Type→ Type,
is-contr(𝐴) ≔ (𝑥 ∶ 𝐴) × (𝑦 ∶ 𝐴) → 𝑥 = 𝑦.

Rest assured that the identity type of a contractible type is itself
contractible.

H-Levels

So far, only vanilla MLTT has been covered.
The h-level of a type is the number of times that =must be iterated
before it trivializes.
For historical reasons, people normally start counting at −2.but that
is obviously ridiculous, so I will count from 0.

Being a 0-type (a type with h-level 0) means being contractible,
which is expressed as:

is-contr ∶ Type→ Type,
is-contr(𝐴) ≔ (𝑥 ∶ 𝐴) × (𝑦 ∶ 𝐴) → 𝑥 = 𝑦.

Rest assured that the identity type of a contractible type is itself
contractible.

H-Levels

So far, only vanilla MLTT has been covered.
The h-level of a type is the number of times that =must be iterated
before it trivializes.
For historical reasons, people normally start counting at −2, but
that is obviously ridiculous, so I will count from 0.

Being a 0-type (a type with h-level 0) means being contractible,
which is expressed as:

is-contr ∶ Type→ Type,
is-contr(𝐴) ≔ (𝑥 ∶ 𝐴) × (𝑦 ∶ 𝐴) → 𝑥 = 𝑦.

Rest assured that the identity type of a contractible type is itself
contractible.

H-Levels

So far, only vanilla MLTT has been covered.
The h-level of a type is the number of times that =must be iterated
before it trivializes.
For historical reasons, people normally start counting at −2, but
that is obviously ridiculous, so I will count from 0.
Being a 0-type (a type with h-level 0) means being contractible,
which is expressed as:

is-contr ∶ Type→ Type,
is-contr(𝐴) ≔ (𝑥 ∶ 𝐴) × (𝑦 ∶ 𝐴) → 𝑥 = 𝑦.

Rest assured that the identity type of a contractible type is itself
contractible.

H-Levels

So far, only vanilla MLTT has been covered.
The h-level of a type is the number of times that =must be iterated
before it trivializes.
For historical reasons, people normally start counting at −2, but
that is obviously ridiculous, so I will count from 0.
Being a 0-type (a type with h-level 0) means being contractible,
which is expressed as:

is-contr ∶ Type→ Type,
is-contr(𝐴) ≔ (𝑥 ∶ 𝐴) × (𝑦 ∶ 𝐴) → 𝑥 = 𝑦.

Rest assured that the identity type of a contractible type is itself
contractible.

More H-Levels

Being a propositionmeans being a 1-type (having “at most one”
term/proof):

is-prop ∶ Type→ Type,
is-prop(𝐴) ≔ (𝑥, 𝑦 ∶ 𝐴) → 𝑥 = 𝑦.

The types 𝟘 and 𝟙 are both propositions.
Being a setmeans being a 2-type (its identity type is a proposition)

is-set ∶ Type→ Type,
is-set(𝐴) ≔ (𝑥, 𝑦 ∶ 𝐴) → is-prop(𝑥 = 𝑦).

It can be proven (with some effort) that ℕ is a set (this follows by
Hedberg’s Theorem, or from the “encode-decode” method).

More H-Levels

Being a propositionmeans being a 1-type (having “at most one”
term/proof):

is-prop ∶ Type→ Type,
is-prop(𝐴) ≔ (𝑥, 𝑦 ∶ 𝐴) → 𝑥 = 𝑦.

The types 𝟘 and 𝟙 are both propositions.

Being a setmeans being a 2-type (its identity type is a proposition)

is-set ∶ Type→ Type,
is-set(𝐴) ≔ (𝑥, 𝑦 ∶ 𝐴) → is-prop(𝑥 = 𝑦).

It can be proven (with some effort) that ℕ is a set (this follows by
Hedberg’s Theorem, or from the “encode-decode” method).

More H-Levels

Being a propositionmeans being a 1-type (having “at most one”
term/proof):

is-prop ∶ Type→ Type,
is-prop(𝐴) ≔ (𝑥, 𝑦 ∶ 𝐴) → 𝑥 = 𝑦.

The types 𝟘 and 𝟙 are both propositions.
Being a setmeans being a 2-type (its identity type is a proposition)

is-set ∶ Type→ Type,
is-set(𝐴) ≔ (𝑥, 𝑦 ∶ 𝐴) → is-prop(𝑥 = 𝑦).

It can be proven (with some effort) that ℕ is a set (this follows by
Hedberg’s Theorem, or from the “encode-decode” method).

More H-Levels

Being a propositionmeans being a 1-type (having “at most one”
term/proof):

is-prop ∶ Type→ Type,
is-prop(𝐴) ≔ (𝑥, 𝑦 ∶ 𝐴) → 𝑥 = 𝑦.

The types 𝟘 and 𝟙 are both propositions.
Being a setmeans being a 2-type (its identity type is a proposition)

is-set ∶ Type→ Type,
is-set(𝐴) ≔ (𝑥, 𝑦 ∶ 𝐴) → is-prop(𝑥 = 𝑦).

It can be proven (with some effort) that ℕ is a set (this follows by
Hedberg’s Theorem, or from the “encode-decode” method).

Equivalence

Given types 𝐴, 𝐵, being an equivalence is a property of functions
𝐴 → 𝐵:

is-equiv ∶ (𝐴 → 𝐵) → Type,
is-equiv(𝑓) ≔ (𝑦 ∶ 𝐵) → is-contr((𝑥 ∶ 𝐴) × (𝑓(𝑥) = 𝑦)).

This is actually different from the naïve translation of “is bijective”
(since there might be different proofs that 𝑓(𝑥) = 𝑦).
We can define the type of all equivalences between two types:

𝐴 ≃ 𝐵 ≔ (𝑓 ∶ 𝐴 → 𝐵) × is-equiv(𝑓),

which is a “nice” definition since is-equiv(𝑓) is always a proposition.

Equivalence

Given types 𝐴, 𝐵, being an equivalence is a property of functions
𝐴 → 𝐵:

is-equiv ∶ (𝐴 → 𝐵) → Type,
is-equiv(𝑓) ≔ (𝑦 ∶ 𝐵) → is-contr((𝑥 ∶ 𝐴) × (𝑓(𝑥) = 𝑦)).

This is actually different from the naïve translation of “is bijective”
(since there might be different proofs that 𝑓(𝑥) = 𝑦).

We can define the type of all equivalences between two types:

𝐴 ≃ 𝐵 ≔ (𝑓 ∶ 𝐴 → 𝐵) × is-equiv(𝑓),

which is a “nice” definition since is-equiv(𝑓) is always a proposition.

Equivalence

Given types 𝐴, 𝐵, being an equivalence is a property of functions
𝐴 → 𝐵:

is-equiv ∶ (𝐴 → 𝐵) → Type,
is-equiv(𝑓) ≔ (𝑦 ∶ 𝐵) → is-contr((𝑥 ∶ 𝐴) × (𝑓(𝑥) = 𝑦)).

This is actually different from the naïve translation of “is bijective”
(since there might be different proofs that 𝑓(𝑥) = 𝑦).
We can define the type of all equivalences between two types:

𝐴 ≃ 𝐵 ≔ (𝑓 ∶ 𝐴 → 𝐵) × is-equiv(𝑓),

which is a “nice” definition since is-equiv(𝑓) is always a proposition.

Univalence

The Univalence Principle is a novel contribution of HoTT, which
cannot even be stated in other foundations.

Succinctly, it states that equivalence is equivalent to identity.
More precisely,

univalence ∶ (𝐴, 𝐵 ∶ Type) → (𝐴 ≃ 𝐵) ≃ (𝐴 = 𝐵).

The univalence principle has the following wonderful
consequences:

Logically equivalent propositions are equal.
Sets with the same cardinality are equal (don’t confuse sets
with subsets).
Isomorphic groups are equal (don’t confuse groups with
subgroups).

Univalence

The Univalence Principle is a novel contribution of HoTT, which
cannot even be stated in other foundations.
Succinctly, it states that equivalence is equivalent to identity.

More precisely,

univalence ∶ (𝐴, 𝐵 ∶ Type) → (𝐴 ≃ 𝐵) ≃ (𝐴 = 𝐵).

The univalence principle has the following wonderful
consequences:

Logically equivalent propositions are equal.
Sets with the same cardinality are equal (don’t confuse sets
with subsets).
Isomorphic groups are equal (don’t confuse groups with
subgroups).

Univalence

The Univalence Principle is a novel contribution of HoTT, which
cannot even be stated in other foundations.
Succinctly, it states that equivalence is equivalent to identity.
More precisely,

univalence ∶ (𝐴, 𝐵 ∶ Type) → (𝐴 ≃ 𝐵) ≃ (𝐴 = 𝐵).

The univalence principle has the following wonderful
consequences:

Logically equivalent propositions are equal.

Sets with the same cardinality are equal (don’t confuse sets
with subsets).
Isomorphic groups are equal (don’t confuse groups with
subgroups).

Univalence

The Univalence Principle is a novel contribution of HoTT, which
cannot even be stated in other foundations.
Succinctly, it states that equivalence is equivalent to identity.
More precisely,

univalence ∶ (𝐴, 𝐵 ∶ Type) → (𝐴 ≃ 𝐵) ≃ (𝐴 = 𝐵).

The univalence principle has the following wonderful
consequences:

Logically equivalent propositions are equal.
Sets with the same cardinality are equal (don’t confuse sets
with subsets).

Isomorphic groups are equal (don’t confuse groups with
subgroups).

Univalence

The Univalence Principle is a novel contribution of HoTT, which
cannot even be stated in other foundations.
Succinctly, it states that equivalence is equivalent to identity.
More precisely,

univalence ∶ (𝐴, 𝐵 ∶ Type) → (𝐴 ≃ 𝐵) ≃ (𝐴 = 𝐵).

The univalence principle has the following wonderful
consequences:

Logically equivalent propositions are equal.
Sets with the same cardinality are equal (don’t confuse sets
with subsets).
Isomorphic groups are equal (don’t confuse groups with
subgroups).

What?

This is absurd!

You’re welcome to feel that way, but the logicians have shown that
HoTT is consistent (assuming that ZFC with countably many
inaccessibles is consistent).

How is this not contradictory?
You may have heard that “isomorphic structures have the same
structural properties”.
In HoTT, only structural problems can be defined in the first place,
so there is no problem.

Why use univalence?
It’s already used informally, for convenience. If 𝐺 and 𝐻 are
isomorphic groups, and 𝐺 is sqaunchy, then you can bet that 𝐻 is
squanchy. HoTT provides a rigorous justification for this.

What?

This is absurd!
You’re welcome to feel that way, but the logicians have shown that
HoTT is consistent (assuming that ZFC with countably many
inaccessibles is consistent).

How is this not contradictory?
You may have heard that “isomorphic structures have the same
structural properties”.
In HoTT, only structural problems can be defined in the first place,
so there is no problem.

Why use univalence?
It’s already used informally, for convenience. If 𝐺 and 𝐻 are
isomorphic groups, and 𝐺 is sqaunchy, then you can bet that 𝐻 is
squanchy. HoTT provides a rigorous justification for this.

What?

This is absurd!
You’re welcome to feel that way, but the logicians have shown that
HoTT is consistent (assuming that ZFC with countably many
inaccessibles is consistent).

How is this not contradictory?

You may have heard that “isomorphic structures have the same
structural properties”.
In HoTT, only structural problems can be defined in the first place,
so there is no problem.

Why use univalence?
It’s already used informally, for convenience. If 𝐺 and 𝐻 are
isomorphic groups, and 𝐺 is sqaunchy, then you can bet that 𝐻 is
squanchy. HoTT provides a rigorous justification for this.

What?

This is absurd!
You’re welcome to feel that way, but the logicians have shown that
HoTT is consistent (assuming that ZFC with countably many
inaccessibles is consistent).

How is this not contradictory?
You may have heard that “isomorphic structures have the same
structural properties”.

In HoTT, only structural problems can be defined in the first place,
so there is no problem.

Why use univalence?
It’s already used informally, for convenience. If 𝐺 and 𝐻 are
isomorphic groups, and 𝐺 is sqaunchy, then you can bet that 𝐻 is
squanchy. HoTT provides a rigorous justification for this.

What?

This is absurd!
You’re welcome to feel that way, but the logicians have shown that
HoTT is consistent (assuming that ZFC with countably many
inaccessibles is consistent).

How is this not contradictory?
You may have heard that “isomorphic structures have the same
structural properties”.
In HoTT, only structural problems can be defined in the first place,
so there is no problem.

Why use univalence?

It’s already used informally, for convenience. If 𝐺 and 𝐻 are
isomorphic groups, and 𝐺 is sqaunchy, then you can bet that 𝐻 is
squanchy. HoTT provides a rigorous justification for this.

What?

This is absurd!
You’re welcome to feel that way, but the logicians have shown that
HoTT is consistent (assuming that ZFC with countably many
inaccessibles is consistent).

How is this not contradictory?
You may have heard that “isomorphic structures have the same
structural properties”.
In HoTT, only structural problems can be defined in the first place,
so there is no problem.

Why use univalence?
It’s already used informally, for convenience. If 𝐺 and 𝐻 are
isomorphic groups, and 𝐺 is sqaunchy, then you can bet that 𝐻 is
squanchy. HoTT provides a rigorous justification for this.

Consequence of Univalences

All types are characterized up to equivalence.

If someone inductively defines the matural numbers as follows:

𝕄 ∶ Type, 1 ∶ 𝕄, 𝑆 ∶ 𝕄 → 𝕄,

all properties/constructions of 𝑁 can be interpreted in𝑀, via
univalence and transport. Univalence lets us ignore unimportant
differences in representation, and see through to the mathematical
objects themselves.

By characterizing the identity type, univalence lets us prove that
Set ≔ (𝐴 ∶ Type) × is-set(𝐴) is a 3-type (i.e., its identity types are
sets). Given sets 𝐴, 𝐵, the type 𝐴 = 𝐵 is equivalent (and hence
equal!) to the set of bijections from 𝐴 to 𝐵.

Consequence of Univalences

All types are characterized up to equivalence.
If someone inductively defines the matural numbers as follows:

𝕄 ∶ Type, 1 ∶ 𝕄, 𝑆 ∶ 𝕄 → 𝕄,

all properties/constructions of 𝑁 can be interpreted in𝑀, via
univalence and transport.

Univalence lets us ignore unimportant
differences in representation, and see through to the mathematical
objects themselves.

By characterizing the identity type, univalence lets us prove that
Set ≔ (𝐴 ∶ Type) × is-set(𝐴) is a 3-type (i.e., its identity types are
sets). Given sets 𝐴, 𝐵, the type 𝐴 = 𝐵 is equivalent (and hence
equal!) to the set of bijections from 𝐴 to 𝐵.

Consequence of Univalences

All types are characterized up to equivalence.
If someone inductively defines the matural numbers as follows:

𝕄 ∶ Type, 1 ∶ 𝕄, 𝑆 ∶ 𝕄 → 𝕄,

all properties/constructions of 𝑁 can be interpreted in𝑀, via
univalence and transport. Univalence lets us ignore unimportant
differences in representation, and see through to the mathematical
objects themselves.

By characterizing the identity type, univalence lets us prove that
Set ≔ (𝐴 ∶ Type) × is-set(𝐴) is a 3-type (i.e., its identity types are
sets). Given sets 𝐴, 𝐵, the type 𝐴 = 𝐵 is equivalent (and hence
equal!) to the set of bijections from 𝐴 to 𝐵.

Consequence of Univalences

All types are characterized up to equivalence.
If someone inductively defines the matural numbers as follows:

𝕄 ∶ Type, 1 ∶ 𝕄, 𝑆 ∶ 𝕄 → 𝕄,

all properties/constructions of 𝑁 can be interpreted in𝑀, via
univalence and transport. Univalence lets us ignore unimportant
differences in representation, and see through to the mathematical
objects themselves.

By characterizing the identity type, univalence lets us prove that
Set ≔ (𝐴 ∶ Type) × is-set(𝐴) is a 3-type (i.e., its identity types are
sets).

Given sets 𝐴, 𝐵, the type 𝐴 = 𝐵 is equivalent (and hence
equal!) to the set of bijections from 𝐴 to 𝐵.

Consequence of Univalences

All types are characterized up to equivalence.
If someone inductively defines the matural numbers as follows:

𝕄 ∶ Type, 1 ∶ 𝕄, 𝑆 ∶ 𝕄 → 𝕄,

all properties/constructions of 𝑁 can be interpreted in𝑀, via
univalence and transport. Univalence lets us ignore unimportant
differences in representation, and see through to the mathematical
objects themselves.

By characterizing the identity type, univalence lets us prove that
Set ≔ (𝐴 ∶ Type) × is-set(𝐴) is a 3-type (i.e., its identity types are
sets). Given sets 𝐴, 𝐵, the type 𝐴 = 𝐵 is equivalent (and hence
equal!) to the set of bijections from 𝐴 to 𝐵.

Higher Inductive Types

Higher inductive types are the second novel feature of HoTT.

The
most important HIT is propositional truncation of a type 𝐴, which
supplies paths between all points in 𝐴, making it a proposition:

‖𝐴‖ ∶ Type, squash ∶ (𝑥, 𝑦 ∶ 𝐴) → 𝑥 = 𝑦.

This features the higher constructor squash.
Intuitively, to define a function out of ‖𝐴‖, you may use a term of 𝐴,
provided that the value you are defining does not depend on which
term you select (for example, the codomain type could be a
proposition).

Higher Inductive Types

Higher inductive types are the second novel feature of HoTT. The
most important HIT is propositional truncation of a type 𝐴, which
supplies paths between all points in 𝐴, making it a proposition:

‖𝐴‖ ∶ Type, squash ∶ (𝑥, 𝑦 ∶ 𝐴) → 𝑥 = 𝑦.

This features the higher constructor squash.

Intuitively, to define a function out of ‖𝐴‖, you may use a term of 𝐴,
provided that the value you are defining does not depend on which
term you select (for example, the codomain type could be a
proposition).

Higher Inductive Types

Higher inductive types are the second novel feature of HoTT. The
most important HIT is propositional truncation of a type 𝐴, which
supplies paths between all points in 𝐴, making it a proposition:

‖𝐴‖ ∶ Type, squash ∶ (𝑥, 𝑦 ∶ 𝐴) → 𝑥 = 𝑦.

This features the higher constructor squash.
Intuitively, to define a function out of ‖𝐴‖, you may use a term of 𝐴,
provided that the value you are defining does not depend on which
term you select (for example, the codomain type could be a
proposition).

More Logic

Propositional truncation lets us define disjunction and existential
quantification as legitimate propositions:

Disjunction: ‖𝐴 + 𝐵‖.

Existential quantification: ‖(𝑥 ∶ 𝐴) × 𝑃(𝑥)‖.
So now it’s possible to express “we know that one of 𝐴 or 𝐵 is true,
but we don’t know which one”. Some classical axioms that are
indispensible for much of mathematics:

LEM ∶ (𝐴 ∶ Type) → is-prop(𝐴) → (𝐴 + ¬𝐴)

The axiom of choice: for any set 𝐴 and any family of sets
𝐵 ∶ 𝐴 → Type, we have

((𝑥 ∶ 𝐴) → ‖𝐵(𝑥)‖) → ‖(𝑥 ∶ 𝐴) → 𝐵(𝑥)‖.

More Logic

Propositional truncation lets us define disjunction and existential
quantification as legitimate propositions:

Disjunction: ‖𝐴 + 𝐵‖.
Existential quantification: ‖(𝑥 ∶ 𝐴) × 𝑃(𝑥)‖.

So now it’s possible to express “we know that one of 𝐴 or 𝐵 is true,
but we don’t know which one”. Some classical axioms that are
indispensible for much of mathematics:

LEM ∶ (𝐴 ∶ Type) → is-prop(𝐴) → (𝐴 + ¬𝐴)

The axiom of choice: for any set 𝐴 and any family of sets
𝐵 ∶ 𝐴 → Type, we have

((𝑥 ∶ 𝐴) → ‖𝐵(𝑥)‖) → ‖(𝑥 ∶ 𝐴) → 𝐵(𝑥)‖.

More Logic

Propositional truncation lets us define disjunction and existential
quantification as legitimate propositions:

Disjunction: ‖𝐴 + 𝐵‖.
Existential quantification: ‖(𝑥 ∶ 𝐴) × 𝑃(𝑥)‖.

So now it’s possible to express “we know that one of 𝐴 or 𝐵 is true,
but we don’t know which one”.

Some classical axioms that are
indispensible for much of mathematics:

LEM ∶ (𝐴 ∶ Type) → is-prop(𝐴) → (𝐴 + ¬𝐴)

The axiom of choice: for any set 𝐴 and any family of sets
𝐵 ∶ 𝐴 → Type, we have

((𝑥 ∶ 𝐴) → ‖𝐵(𝑥)‖) → ‖(𝑥 ∶ 𝐴) → 𝐵(𝑥)‖.

More Logic

Propositional truncation lets us define disjunction and existential
quantification as legitimate propositions:

Disjunction: ‖𝐴 + 𝐵‖.
Existential quantification: ‖(𝑥 ∶ 𝐴) × 𝑃(𝑥)‖.

So now it’s possible to express “we know that one of 𝐴 or 𝐵 is true,
but we don’t know which one”. Some classical axioms that are
indispensible for much of mathematics:

LEM ∶ (𝐴 ∶ Type) → is-prop(𝐴) → (𝐴 + ¬𝐴)

The axiom of choice: for any set 𝐴 and any family of sets
𝐵 ∶ 𝐴 → Type, we have

((𝑥 ∶ 𝐴) → ‖𝐵(𝑥)‖) → ‖(𝑥 ∶ 𝐴) → 𝐵(𝑥)‖.

More Logic

Propositional truncation lets us define disjunction and existential
quantification as legitimate propositions:

Disjunction: ‖𝐴 + 𝐵‖.
Existential quantification: ‖(𝑥 ∶ 𝐴) × 𝑃(𝑥)‖.

So now it’s possible to express “we know that one of 𝐴 or 𝐵 is true,
but we don’t know which one”. Some classical axioms that are
indispensible for much of mathematics:

LEM ∶ (𝐴 ∶ Type) → is-prop(𝐴) → (𝐴 + ¬𝐴)

The axiom of choice: for any set 𝐴 and any family of sets
𝐵 ∶ 𝐴 → Type, we have

((𝑥 ∶ 𝐴) → ‖𝐵(𝑥)‖) → ‖(𝑥 ∶ 𝐴) → 𝐵(𝑥)‖.

More HITs

Quotient Types
Given a relation 𝑅 ∶ 𝐴 → 𝐴 → Type, you can form the quotient of
𝐴 by 𝑅 as a HIT:

[−] ∶ 𝐴 → 𝐴/𝑅, squash ∶ (𝑥 𝑦 ∶ 𝐴) → 𝑅(𝑥, 𝑦) → [𝑥] = [𝑦],
set-squash ∶ is-set(𝐴/𝑅).

This is useful to define, e.g., ℤ and ℚ.

The Circle Type
Defined by

𝕊1 ∶ Type, base ∶ 𝕊1, loop ∶ base = base,

this is a “synthetic” version of the circle. We have
(base = base) = ℤ.

More HITs

Quotient Types
Given a relation 𝑅 ∶ 𝐴 → 𝐴 → Type, you can form the quotient of
𝐴 by 𝑅 as a HIT:

[−] ∶ 𝐴 → 𝐴/𝑅, squash ∶ (𝑥 𝑦 ∶ 𝐴) → 𝑅(𝑥, 𝑦) → [𝑥] = [𝑦],
set-squash ∶ is-set(𝐴/𝑅).

This is useful to define, e.g., ℤ and ℚ.

The Circle Type
Defined by

𝕊1 ∶ Type, base ∶ 𝕊1, loop ∶ base = base,

this is a “synthetic” version of the circle. We have
(base = base) = ℤ.

More HITs

Quotient Types
Given a relation 𝑅 ∶ 𝐴 → 𝐴 → Type, you can form the quotient of
𝐴 by 𝑅 as a HIT:

[−] ∶ 𝐴 → 𝐴/𝑅, squash ∶ (𝑥 𝑦 ∶ 𝐴) → 𝑅(𝑥, 𝑦) → [𝑥] = [𝑦],
set-squash ∶ is-set(𝐴/𝑅).

This is useful to define, e.g., ℤ and ℚ.

The Circle Type
Defined by

𝕊1 ∶ Type, base ∶ 𝕊1, loop ∶ base = base,

this is a “synthetic” version of the circle.

We have
(base = base) = ℤ.

More HITs

Quotient Types
Given a relation 𝑅 ∶ 𝐴 → 𝐴 → Type, you can form the quotient of
𝐴 by 𝑅 as a HIT:

[−] ∶ 𝐴 → 𝐴/𝑅, squash ∶ (𝑥 𝑦 ∶ 𝐴) → 𝑅(𝑥, 𝑦) → [𝑥] = [𝑦],
set-squash ∶ is-set(𝐴/𝑅).

This is useful to define, e.g., ℤ and ℚ.

The Circle Type
Defined by

𝕊1 ∶ Type, base ∶ 𝕊1, loop ∶ base = base,

this is a “synthetic” version of the circle. We have
(base = base) = ℤ.

Proof Assistants

What is a proof assistant?

It is a computer program which checks the correctness of a
proof/mathematical construction, which is typically entered by a
human user.

Examles?
Agda, Coq, Isabelle, Lean, Mizar, …. (I recommend Agda for HoTT).

Why bother?
Playing with a proof assistant is the best way to understand the
previous content on an intuitive level.
Ensures that you don’t make mistakes when things get compli-
cated.
Turns mathematics into a fun computer game.

Proof Assistants

What is a proof assistant?
It is a computer program which checks the correctness of a
proof/mathematical construction, which is typically entered by a
human user.

Examles?
Agda, Coq, Isabelle, Lean, Mizar, …. (I recommend Agda for HoTT).

Why bother?
Playing with a proof assistant is the best way to understand the
previous content on an intuitive level.
Ensures that you don’t make mistakes when things get compli-
cated.
Turns mathematics into a fun computer game.

Proof Assistants

What is a proof assistant?
It is a computer program which checks the correctness of a
proof/mathematical construction, which is typically entered by a
human user.

Examles?

Agda, Coq, Isabelle, Lean, Mizar, …. (I recommend Agda for HoTT).

Why bother?
Playing with a proof assistant is the best way to understand the
previous content on an intuitive level.
Ensures that you don’t make mistakes when things get compli-
cated.
Turns mathematics into a fun computer game.

Proof Assistants

What is a proof assistant?
It is a computer program which checks the correctness of a
proof/mathematical construction, which is typically entered by a
human user.

Examles?
Agda, Coq, Isabelle, Lean, Mizar, …. (I recommend Agda for HoTT).

Why bother?

Playing with a proof assistant is the best way to understand the
previous content on an intuitive level.
Ensures that you don’t make mistakes when things get compli-
cated.
Turns mathematics into a fun computer game.

Proof Assistants

What is a proof assistant?
It is a computer program which checks the correctness of a
proof/mathematical construction, which is typically entered by a
human user.

Examles?
Agda, Coq, Isabelle, Lean, Mizar, …. (I recommend Agda for HoTT).

Why bother?
Playing with a proof assistant is the best way to understand the
previous content on an intuitive level.

Ensures that you don’t make mistakes when things get compli-
cated.
Turns mathematics into a fun computer game.

Proof Assistants

What is a proof assistant?
It is a computer program which checks the correctness of a
proof/mathematical construction, which is typically entered by a
human user.

Examles?
Agda, Coq, Isabelle, Lean, Mizar, …. (I recommend Agda for HoTT).

Why bother?
Playing with a proof assistant is the best way to understand the
previous content on an intuitive level.
Ensures that you don’t make mistakes when things get compli-
cated.

Turns mathematics into a fun computer game.

Proof Assistants

What is a proof assistant?
It is a computer program which checks the correctness of a
proof/mathematical construction, which is typically entered by a
human user.

Examles?
Agda, Coq, Isabelle, Lean, Mizar, …. (I recommend Agda for HoTT).

Why bother?
Playing with a proof assistant is the best way to understand the
previous content on an intuitive level.
Ensures that you don’t make mistakes when things get compli-
cated.
Turns mathematics into a fun computer game.

Cubical Type Theory

This is an extension of HoTT.

Talk to me about this later...

Cubical Type Theory

This is an extension of HoTT.
Talk to me about this later...

Further Reading

Introduction to HoTT:
https://arxiv.org/abs/2212.11082
The HoTT Book:
https://homotopytypetheory.org/book/
The 1Lab:
https://1lab.dev/
The HoTT Game:
https://thehottgameguide.readthedocs.io/en/
latest/index.html

https://arxiv.org/abs/2212.11082
https://homotopytypetheory.org/book/
https://1lab.dev/
https://thehottgameguide.readthedocs.io/en/latest/index.html
https://thehottgameguide.readthedocs.io/en/latest/index.html

