
Finding factors in Berlekamp’s Algebra
UQ Mathematics Student Society

Joel Richardson

The University of Queensland

April 2024

The Problem

Suppose p is prime. Let Zp be the field of integers mod p.

Take a polynomial f ∈ Zp[x].

Suppose, for simplicity, that f is squarefree1.

How do we find the factors of f?

1has no repeated factors. The map f 7→ f/ gcd(f, f ′) deletes repeated
factors.

The Problem

Suppose p is prime. Let Zp be the field of integers mod p.

Take a polynomial f ∈ Zp[x].

Suppose, for simplicity, that f is squarefree1.

How do we find the factors of f?

1has no repeated factors. The map f 7→ f/ gcd(f, f ′) deletes repeated
factors.

The Problem

Suppose p is prime. Let Zp be the field of integers mod p.

Take a polynomial f ∈ Zp[x].

Suppose, for simplicity, that f is squarefree1.

How do we find the factors of f?

1has no repeated factors. The map f 7→ f/ gcd(f, f ′) deletes repeated
factors.

The Problem

Suppose p is prime. Let Zp be the field of integers mod p.

Take a polynomial f ∈ Zp[x].

Suppose, for simplicity, that f is squarefree1.

How do we find the factors of f?

1has no repeated factors. The map f 7→ f/ gcd(f, f ′) deletes repeated
factors.

Problem Motivation

Ideas?

Let’s get the obvious out of the way.

We can theoretically find the factors of f with a brute force search.

▶ this is boring

Ideas?

Let’s get the obvious out of the way.

We can theoretically find the factors of f with a brute force search.

▶ this is boring

Ideas?

Let’s get the obvious out of the way.

We can theoretically find the factors of f with a brute force search.

▶ this is boring (and slow)

Ideas?

Observation 1 We don’t have to find every factor in one go.

If we can reliably produce even just one non-trivial divisor of f ,
then repeated application of our procedure will suffice to find every
factor.

Ideas?

Observation 1 We don’t have to find every factor in one go.

If we can reliably produce even just one non-trivial divisor of f ,
then repeated application of our procedure will suffice to find every
factor.

Non-Trivial Divisors

Suppose f has factors f1, f2, . . . , fn

A non-trivial divisor g of f must contain at least one factor fi of f

We might say that g splits f in two.

f = (f1f2f3)(f4 . . . fn)

g = (f1f2f3) f/g = (f4 . . . fn)

Non-Trivial Divisors

Suppose f has factors f1, f2, . . . , fn

A non-trivial divisor g of f must contain at least one factor fi of f

We might say that g splits f in two.

f = (f1f2f3)(f4 . . . fn)

g = (f1f2f3) f/g = (f4 . . . fn)

Non-Trivial Divisors

Suppose f has factors f1, f2, . . . , fn

A non-trivial divisor g of f must contain at least one factor fi of f

We might say that g splits f in two.

f = (f1f2f3)(f4 . . . fn)

g = (f1f2f3) f/g = (f4 . . . fn)

Non-Trivial Divisors

If we can come up with a findNonTrivialDivisor function, our
factoring algorithm might look something like this:

1 factor :: Polynomial -> Set Polynomial
2 factor f = case findNonTrivialDivisor f of
3 Just g ->
4 let h = f / g in
5 Set.union (factor g) (factor h)
6 Nothing ->
7 -- f is irreducible
8 Set.singleton f

Non-Trivial Divisors

We want to find g ∈ Zp[x] such that:

1. At least one factor of f divides g

2. At least one factor of f doesn’t divide g

3. g divides f

Non-Trivial Divisors

We want to find g ∈ Zp[x] such that:

1. At least one factor of f divides g

2. At least one factor of f doesn’t divide g

3. g divides f

Non-Trivial Divisors

We want to find g ∈ Zp[x] such that:

1. At least one factor of f divides g

2. At least one factor of f doesn’t divide g

3. g divides f

Non-Trivial Divisors

We want to find g ∈ Zp[x] such that:

1. At least one factor of f divides g

2. At least one factor of f doesn’t divide g

3. g divides f

Non-Trivial Divisors

We want to find g ∈ Zp[x] such that:

1. At least one factor of f divides g

2. At least one factor of f doesn’t divide g

3. g divides f

Non-Trivial Divisors

We want to find g ∈ Zp[x] such that:

1. At least one factor of f divides g

2. At least one factor of f doesn’t divide g

3. All the factors of g divide f

Non-Trivial Divisors

We want to find g ∈ Zp[x] such that:

1. At least one factor of f divides g

2. At least one factor of f doesn’t divide g

3. All the factors of g divide f

the map g 7→ gcd(f, g) deletes the factors of g that don’t divide f !

Non-Trivial Divisors

We want to find g ∈ Zp[x] such that:

1. At least one factor of f divides g

2. At least one factor of f doesn’t divide g

3. All the factors of g divide f Apply g 7→ gcd(f, g)!

the map g 7→ gcd(f, g) deletes the factors of g that don’t divide f !

Non-Trivial Divisors

Where might we find such a polynomial g?

It’s kinda stupid to look for g in all of Zp[x]

The majority of these polynomials have degree greater than that of
f , and so do not divide it.

Instead, we should search only the set of polynomials whose degree
is less than that of f

Df = {h ∈ Zp[x] : deg (h) < deg (f) }

Non-Trivial Divisors

Where might we find such a polynomial g?

It’s kinda stupid to look for g in all of Zp[x]

The majority of these polynomials have degree greater than that of
f , and so do not divide it.

Instead, we should search only the set of polynomials whose degree
is less than that of f

Df = {h ∈ Zp[x] : deg (h) < deg (f) }

Non-Trivial Divisors

Where might we find such a polynomial g?

It’s kinda stupid to look for g in all of Zp[x]

The majority of these polynomials have degree greater than that of
f , and so do not divide it.

Instead, we should search only the set of polynomials whose degree
is less than that of f

Df = {h ∈ Zp[x] : deg (h) < deg (f) }

Non-Trivial Divisors

Where might we find such a polynomial g?

It’s kinda stupid to look for g in all of Zp[x]

The majority of these polynomials have degree greater than that of
f , and so do not divide it.

Instead, we should search only the set of polynomials whose degree
is less than that of f

Df = {h ∈ Zp[x] : deg (h) < deg (f) }

Non-Trivial Divisors

Where might we find such a polynomial g?

It’s kinda stupid to look for g in all of Zp[x]

The majority of these polynomials have degree greater than that of
f , and so do not divide it.

Instead, we should search only the set of polynomials whose degree
is less than that of f

Df = {h ∈ Zp[x] : deg (h) < deg (f) }

Non-Trivial Divisors (Recap)

We’ve reduced our problem, finding all the factors of f , to the
following problem:

Find any g ∈ Df such that:
1. At least one factor of f divides g

2. At least one factor of f doesn’t divide g

We will call such polynomials based

▶ what’s next?

Non-Trivial Divisors (Recap)

We’ve reduced our problem, finding all the factors of f , to the
following problem:

Find any g ∈ Df such that:
1. At least one factor of f divides g

2. At least one factor of f doesn’t divide g

We will call such polynomials based

▶ what’s next?

What’s next?

Observation 2 This feels like a quotient ring situation.

Consider the ring of polynomials mod f

Af
def
= Zp[x] / 〈 f 〉

Note. this is basically Df but closed under multiplication.

What’s next?

Observation 2 This feels like a quotient ring situation.

Consider the ring of polynomials mod f

Af
def
= Zp[x] / 〈 f 〉

Note. this is basically Df but closed under multiplication.

What’s next?

Observation 2 This feels like a quotient ring situation.

Consider the ring of polynomials mod f

Af
def
= Zp[x] / 〈 f 〉

Note. this is basically Df but closed under multiplication.

The Quotient Ring

Does our new multiplication (·) on Af preserve the properties we
care about?

If g and h are based, is g · h based?

The Quotient Ring

Does our new multiplication (·) on Af preserve the properties we
care about?

If g and h are based, is g · h based?

The Quotient Ring

Suppose g is based

wlog write gcd(f, g) = f1 · · · fk

Now h = f/ gcd(f, g) = fk+1 · · · fn is also based

Notice that every factor of f divides g · h

So g · h isn’t based

The Quotient Ring

Suppose g is based

wlog write gcd(f, g) = f1 · · · fk

Now h = f/ gcd(f, g) = fk+1 · · · fn is also based

Notice that every factor of f divides g · h

So g · h isn’t based

The Quotient Ring

Suppose g is based

wlog write gcd(f, g) = f1 · · · fk

Now h = f/ gcd(f, g) = fk+1 · · · fn is also based

Notice that every factor of f divides g · h

So g · h isn’t based

The Quotient Ring

Suppose g is based

wlog write gcd(f, g) = f1 · · · fk

Now h = f/ gcd(f, g) = fk+1 · · · fn is also based

Notice that every factor of f divides g · h

So g · h isn’t based

The Quotient Ring

Suppose g is based

wlog write gcd(f, g) = f1 · · · fk

Now h = f/ gcd(f, g) = fk+1 · · · fn is also based

Notice that every factor of f divides g · h

So g · h isn’t based

The Quotient Ring

g · h isn’t based.

frick

The Quotient Ring

Suppose g is based

wlog write gcd(f, g) = f1 · · · fk

Now h = f/ gcd(f, g) = fk+1 · · · fn is also based

Notice that every factor of f divides g · h

So g · h isn’t based

The Quotient Ring

Theorem (Chinese remainder)
Suppose R is a commutative ring, and I1, I2, . . . , In are ideals of
R such that for every pair i, j of non-equal indices

R = { ax+ by : a ∈ Ii, b ∈ Ij , x, y ∈ R }

Then, the function

σ : R/

n∩
i=1

Ii → R/I1 ×R/I2 × · · · ×R/In

[r] 7→ ([r], [r], . . . , [r])

is a ring isomorphism.

The Quotient Ring

Theorem (Chinese remainder)
Suppose R is a commutative ring, and I1, I2, . . . , In are ideals of
R such that for every pair i, j of non-equal indices

R = { ax+ by : a ∈ Ii, b ∈ Ij , x, y ∈ R }

Then, the function

: R/

n∩
i=1

Ii → R/I1 ×R/I2 × · · · ×R/In

[r] 7→ ([r], [r], . . . , [r])

is a ring isomorphism.

The Quotient Ring

Notice that

〈 f 〉 = 〈 f1 〉 ∩ 〈 f2 〉 ∩ · · · ∩ 〈 fn 〉

Moreover, it follows from the Chinese remainder theorem that
there is an isomorphism

σ : Af → Zp[x]/〈 f1 〉 × Zp[x]/〈 f2 〉 × · · · × Zp[x]/〈 fn 〉

The Quotient Ring

The map

σ : g 7→ (g mod f1, g mod f2, . . . , g mod fn)

is an isomorphism

The Quotient Ring

Now it’s obvious that if g and h are based, then g · h is either
based or zero.

σ(g · h) = σ(g) · σ(h)
= (0, ∗, . . . , ∗) · (∗, 0, . . . , 0)
= (0 · ∗, ∗ · 0, . . . , ∗ · 0)
= (0, 0, . . . , 0)

Moreover, if g · h is based or zero then at least one of g or h is
based or zero.

▶ if σ(g) is zero in the ith component, then so is σ(g · h)

The Quotient Ring

Notice that if g is based, then gk is based for every positive k.

σ(gk) = σ(g)k = (∗, · · · , 0, · · · , ∗)k = (∗, · · · , 0, · · · , ∗)

The set of based polynomials is closed under exponentiation.

The Quotient Ring

Give a name to the exponentiation map:

Qk : Af → Af

g 7→ gk

The Quotient Ring

At this point we must make a sacrifice.

We must abandon some based polynomials.

frick

The Quotient Ring

We’re going to pick some k and look at the subset in Af that is
fixed by Qk

▶ which k should we pick?
▶ what properties do we want?

The Quotient Ring

We’re going to pick some k and look at the subset in Af that is
fixed by Qk

▶ which k should we pick?

▶ what properties do we want?

The Quotient Ring

We’re going to pick some k and look at the subset in Af that is
fixed by Qk

▶ which k should we pick?
▶ what properties do we want?

The Quotient Ring

Suppose g and h are in fix(Qk)

Qk(g · h) = (g · h)k = gk · hk = g · h

▶ fix(Qk) is closed under multiplication
▶ is it closed under addition?

Qk(g + h) = (g + h)k = gk + hk = g + h

▶ set k = p (the same p as in Zp[x])

The Quotient Ring

Suppose g and h are in fix(Qk)

Qk(g · h) = (g · h)k = gk · hk = g · h

▶ fix(Qk) is closed under multiplication

▶ is it closed under addition?

Qk(g + h) = (g + h)k = gk + hk = g + h

▶ set k = p (the same p as in Zp[x])

The Quotient Ring

Suppose g and h are in fix(Qk)

Qk(g · h) = (g · h)k = gk · hk = g · h

▶ fix(Qk) is closed under multiplication
▶ is it closed under addition?

Qk(g + h) = (g + h)k = gk + hk = g + h

▶ set k = p (the same p as in Zp[x])

The Quotient Ring

Suppose g and h are in fix(Qk)

Qk(g · h) = (g · h)k = gk · hk = g · h

▶ fix(Qk) is closed under multiplication
▶ is it closed under addition?

Qk(g + h) = (g + h)k = gk + hk = g + h

▶ set k = p (the same p as in Zp[x])

The Quotient Ring

Suppose g and h are in fix(Qk)

Qk(g · h) = (g · h)k = gk · hk = g · h

▶ fix(Qk) is closed under multiplication
▶ is it closed under addition?

Qk(g + h) = (g + h)k = gk + hk = g + h

▶ set k = p (the same p as in Zp[x])

The Quotient Ring

Suppose g and h are in fix(Qk)

Qk(g · h) = (g · h)k = gk · hk = g · h

▶ fix(Qk) is closed under multiplication
▶ is it closed under addition?

Qk(g + h) = (g + h)k = gk + hk = g + h

▶ set k = p (the same p as in Zp[x])

The Quotient Ring

Bf
def
= fix(Qp)

Turns out Bf is kinda epic.

So epic, infact, that it has a name.

Bf is called the Berlekamp subalgebra.

The Quotient Ring

Bf
def
= fix(Qp)

Turns out Bf is kinda epic.

So epic, infact, that it has a name.

Bf is called the Berlekamp subalgebra.

The Quotient Ring

Bf
def
= fix(Qp)

Turns out Bf is kinda epic.

So epic, infact, that it has a name.

Bf is called the Berlekamp subalgebra.

The Quotient Ring

Bf
def
= fix(Qp)

Turns out Bf is kinda epic.

So epic, infact, that it has a name.

Bf is called the Berlekamp subalgebra.

Berlekamp’s Algebra

Some facts:

1. Zp ⊂ Bf ⊂ Af ⊂ Zp[x]

2. Qp is a linear map on Af

3. Bf = fix(Qp)

Berlekamp’s Algebra

Some facts:

1. Zp ⊂ Bf ⊂ Af ⊂ Zp[x]

2. Qp is a linear map on Af

3. Bf = fix(Qp)

Berlekamp’s Algebra

Some facts:

1. Zp ⊂ Bf ⊂ Af ⊂ Zp[x]

2. Qp is a linear map on Af

3. Bf = fix(Qp)

Berlekamp’s Algebra

Some facts:

1. Zp ⊂ Bf ⊂ Af ⊂ Zp[x]

2. Qp is a linear map on Af

3. Bf = fix(Qp)

Berlekamp’s Algebra

Some facts:

1. Zp ⊂ Bf ⊂ Af ⊂ Zp[x]

2. Qp is a linear map on Af

3. Bf = fix(Qp) = {x ∈ Af : xp = x }

Berlekamp’s Algebra

Some facts:

1. Zp ⊂ Bf ⊂ Af ⊂ Zp[x]

2. Qp is a linear map on Af

3. Bf = fix(Qp) = {x ∈ Af : xp − x = 0 }

Berlekamp’s Algebra

Some facts:

1. Zp ⊂ Bf ⊂ Af ⊂ Zp[x]

2. Qp is a linear map on Af

3. Bf = fix(Qp) = {x ∈ Af : xp − x = 0 } = ker(Qp − id)

Berlekamp’s Algebra

We can encode Qf − id as an Af valued matrix.

Then we can use Gaussian elimination2 to produce a basis for its
nullspace.

The members of Bf are precisely the linear combinations of the
elements of this basis!

2other methods are available

Berlekamp’s Algebra

We can encode Qf − id as an Af valued matrix.

Then we can use Gaussian elimination2 to produce a basis for its
nullspace.

The members of Bf are precisely the linear combinations of the
elements of this basis!

2other methods are available

Berlekamp’s Algebra

We can encode Qf − id as an Af valued matrix.

Then we can use Gaussian elimination2 to produce a basis for its
nullspace.

The members of Bf are precisely the linear combinations of the
elements of this basis!

2other methods are available

Berlekamp’s Algebra

Lock in guys.

You ain’t ready for this.

Berlekamp’s Algebra

Have you seen this equality? For every h ∈ Zp[x]

∏
c∈Zp

(h+ c) = hp − h

proof on joelrichardson.au if u want

Berlekamp’s Algebra

For every h ∈ Bf

∏
c∈Zp

(h+ c) = 0 mod f

▶ the product of the (h+ c)s is based or zero
▶ at least one h+ c is based!
▶ at least one gcd(f, h+ c) is a non-trivial divisor of f !

Berlekamp’s Algebra

For every h ∈ Bf

∏
c∈Zp

(h+ c) = 0 mod f

▶ the product of the (h+ c)s is based or zero

▶ at least one h+ c is based!
▶ at least one gcd(f, h+ c) is a non-trivial divisor of f !

Berlekamp’s Algebra

For every h ∈ Bf

∏
c∈Zp

(h+ c) = 0 mod f

▶ the product of the (h+ c)s is based or zero
▶ at least one h+ c is based or zero!

▶ at least one gcd(f, h+ c) is a non-trivial divisor of f !

Berlekamp’s Algebra

For every h ∈ Bf

∏
c∈Zp

(h+ c) = 0 mod f

▶ the product of the (h+ c)s is based or zero
▶ at least one h+ c is based or zero!

▶ at least one gcd(f, h+ c) is a non-trivial divisor of f !

Berlekamp’s Algebra

For every h ∈ Bf

∏
c∈Zp

(h+ c) = 0 mod f

▶ the product of the (h+ c)s is based or zero
▶ at least one h+ c is based!

▶ at least one gcd(f, h+ c) is a non-trivial divisor of f !

Berlekamp’s Algebra

For every h ∈ Bf

∏
c∈Zp

(h+ c) = 0 mod f

▶ the product of the (h+ c)s is based or zero
▶ at least one h+ c is based!
▶ at least one gcd(f, h+ c) is a non-trivial divisor of f !

Berlekamp’s Algebra

Recall our earlier code block:

1 factor :: Polynomial -> Set Polynomial
2 factor f = case findNonTrivialDivisor f of
3 Just g ->
4 let h = f / g in
5 Set.union (factor g) (factor h)
6 Nothing ->
7 -- f is irreducible
8 Set.singleton f

Berlekamp’s Algebra

We can now implement findNonTrivialDivisor

1 findNonTrivialDivisor :: Polynomial -> Maybe Polynomial
2 findNonTrivialDivisor f = case nullspaceBasis (berlekampMatrix f) of
3 basis | length basis < 2 ->
4 Nothing
5 basis ->
6 let h = head basis in
7 find (isNonZeroNonUnit) [gcd f (h + c) | c <- field]
8 -- dont forget to apply the ^^^ gcd we talked about earlier!

Any Questions???

more.

WE CAN DO BETTER

WE CAN DO BETTER

We know that the following is a multiple of f∏
c∈Zp

h+ c

So,

f = gcd

f,
∏
c∈Zp

h+ c

Pretty easy to show that

f =
∏
c∈Zp

gcd (f, h+ c)

WE CAN DO BETTER

We know that the following is a multiple of f∏
c∈Zp

h+ c

So,

f = gcd

f,
∏
c∈Zp

h+ c

Pretty easy to show that

f =
∏
c∈Zp

gcd (f, h+ c)

WE CAN DO BETTER

We know that the following is a multiple of f∏
c∈Zp

h+ c

So,

f = gcd

f,
∏
c∈Zp

h+ c

Pretty easy to show that

f =
∏
c∈Zp

gcd (f, h+ c)

Berlekamp’s Algorithm

1 factorBerlekamp :: Polynomial -> Set Polynomial
2 factorBerlekamp f = case nullspaceBasis (berlekampMatrix f) of
3 basis | length basis > 1 ->
4 let h = head basis in -- element of B_f
5 let terms = filter
6 (isNonZeroNonUnit)
7 [gcd f (h + c) | c <- field]
8 in Set.unionMap factorBerlekamp terms
9 basis ->

10 basis -- f is irreducible

funny: the dimension of Bf is the number of factors of f .

Berlekamp’s Algorithm

1 factorBerlekamp :: Polynomial -> Set Polynomial
2 factorBerlekamp f = case nullspaceBasis (berlekampMatrix f) of
3 basis | length basis > 1 ->
4 let h = head basis in -- element of B_f
5 let terms = filter
6 (isNonZeroNonUnit)
7 [gcd f (h + c) | c <- field]
8 in Set.unionMap factorBerlekamp terms
9 basis ->

10 basis -- f is irreducible

funny: the dimension of Bf is the number of factors of f .

