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The Problem

Suppose p is prime. Let Zp be the field of integers mod p.

Take a polynomial f ∈ Zp[x].

Suppose, for simplicity, that f is squarefree1.

How do we find the factors of f?

1has no repeated factors. The map f 7→ f/ gcd(f, f ′) deletes repeated
factors.
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A non-trivial divisor g of f must contain at least one factor fi of f

We might say that g splits f in two.
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g = (f1f2f3) f/g = (f4 . . . fn)
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Suppose f has factors f1, f2, . . . , fn

A non-trivial divisor g of f must contain at least one factor fi of f

We might say that g splits f in two.

f = (f1f2f3)(f4 . . . fn)

g = (f1f2f3) f/g = (f4 . . . fn)



Non-Trivial Divisors

If we can come up with a findNonTrivialDivisor function, our
factoring algorithm might look something like this:

1 factor :: Polynomial -> Set Polynomial
2 factor f = case findNonTrivialDivisor f of
3 Just g ->
4 let h = f / g in
5 Set.union ( factor g ) ( factor h )
6 Nothing ->
7 -- f is irreducible
8 Set.singleton f
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1. At least one factor of f divides g

2. At least one factor of f doesn’t divide g

3. g divides f
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It’s kinda stupid to look for g in all of Zp[x]

The majority of these polynomials have degree greater than that of
f , and so do not divide it.

Instead, we should search only the set of polynomials whose degree
is less than that of f

Df = {h ∈ Zp[x] : deg (h) < deg (f) }
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We’ve reduced our problem, finding all the factors of f , to the
following problem:

Find any g ∈ Df such that:
1. At least one factor of f divides g

2. At least one factor of f doesn’t divide g

We will call such polynomials based

▶ what’s next?
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The Quotient Ring

Theorem (Chinese remainder)
Suppose R is a commutative ring, and I1, I2, . . . , In are ideals of
R such that for every pair i, j of non-equal indices

R = { ax+ by : a ∈ Ii, b ∈ Ij , x, y ∈ R }

Then, the function

σ : R/

n∩
i=1

Ii → R/I1 ×R/I2 × · · · ×R/In

[r] 7→ ([r], [r], . . . , [r])

is a ring isomorphism.
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The Quotient Ring

Notice that

〈 f 〉 = 〈 f1 〉 ∩ 〈 f2 〉 ∩ · · · ∩ 〈 fn 〉

Moreover, it follows from the Chinese remainder theorem that
there is an isomorphism

σ : Af → Zp[x]/〈 f1 〉 × Zp[x]/〈 f2 〉 × · · · × Zp[x]/〈 fn 〉



The Quotient Ring

The map

σ : g 7→ ( g mod f1, g mod f2, . . . , g mod fn )

is an isomorphism



The Quotient Ring

Now it’s obvious that if g and h are based, then g · h is either
based or zero.

σ(g · h) = σ(g) · σ(h)
= ( 0, ∗, . . . , ∗ ) · ( ∗, 0, . . . , 0 )
= ( 0 · ∗, ∗ · 0, . . . , ∗ · 0 )
= ( 0, 0, . . . , 0 )

Moreover, if g · h is based or zero then at least one of g or h is
based or zero.

▶ if σ(g) is zero in the ith component, then so is σ(g · h)



The Quotient Ring

Notice that if g is based, then gk is based for every positive k.

σ(gk) = σ(g)k = ( ∗, · · · , 0, · · · , ∗ )k = ( ∗, · · · , 0, · · · , ∗ )

The set of based polynomials is closed under exponentiation.



The Quotient Ring

Give a name to the exponentiation map:

Qk : Af → Af

g 7→ gk



The Quotient Ring

At this point we must make a sacrifice.

We must abandon some based polynomials.



frick
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We’re going to pick some k and look at the subset in Af that is
fixed by Qk

▶ which k should we pick?
▶ what properties do we want?
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▶ is it closed under addition?

Qk(g + h) = (g + h)k = gk + hk = g + h

▶ set k = p (the same p as in Zp[x])
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Some facts:

1. Zp ⊂ Bf ⊂ Af ⊂ Zp[x]

2. Qp is a linear map on Af

3. Bf = fix(Qp) = {x ∈ Af : xp − x = 0 } = ker(Qp − id)



Berlekamp’s Algebra

We can encode Qf − id as an Af valued matrix.

Then we can use Gaussian elimination2 to produce a basis for its
nullspace.

The members of Bf are precisely the linear combinations of the
elements of this basis!

2other methods are available
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Berlekamp’s Algebra

Lock in guys.

You ain’t ready for this.



Berlekamp’s Algebra

Have you seen this equality? For every h ∈ Zp[x]

∏
c∈Zp

(h+ c) = hp − h

proof on joelrichardson.au if u want



Berlekamp’s Algebra

For every h ∈ Bf

∏
c∈Zp

(h+ c) = 0 mod f

▶ the product of the (h+ c)s is based or zero
▶ at least one h+ c is based!
▶ at least one gcd(f, h+ c) is a non-trivial divisor of f !
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Berlekamp’s Algebra

Recall our earlier code block:

1 factor :: Polynomial -> Set Polynomial
2 factor f = case findNonTrivialDivisor f of
3 Just g ->
4 let h = f / g in
5 Set.union ( factor g ) ( factor h )
6 Nothing ->
7 -- f is irreducible
8 Set.singleton f



Berlekamp’s Algebra

We can now implement findNonTrivialDivisor

1 findNonTrivialDivisor :: Polynomial -> Maybe Polynomial
2 findNonTrivialDivisor f = case nullspaceBasis (berlekampMatrix f) of
3 basis | length basis < 2 ->
4 Nothing
5 basis ->
6 let h = head basis in
7 find ( isNonZeroNonUnit ) [ gcd f (h + c) | c <- field ]
8 -- dont forget to apply the ^^^ gcd we talked about earlier!



Any Questions???
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Berlekamp’s Algorithm

1 factorBerlekamp :: Polynomial -> Set Polynomial
2 factorBerlekamp f = case nullspaceBasis (berlekampMatrix f) of
3 basis | length basis > 1 ->
4 let h = head basis in -- element of B_f
5 let terms = filter
6 ( isNonZeroNonUnit )
7 [ gcd f (h + c) | c <- field ]
8 in Set.unionMap factorBerlekamp terms
9 basis ->

10 basis -- f is irreducible

funny: the dimension of Bf is the number of factors of f .
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