Finding factors in Berlekamp's Algebra UQ Mathematics Student Society

Joel Richardson

The University of Queensland

April 2024

Suppose p is prime. Let \mathbb{Z}_p be the field of integers mod p .

Take a polynomial $f \in \mathbb{Z}_p[x]$.

Suppose, for simplicity, that f is squarefree¹.

 1 has no repeated factors. The map $f \mapsto f/\gcd(f,\,f^{\,\prime})$ deletes repeated factors.

Suppose p is prime. Let \mathbb{Z}_p be the field of integers mod p .

Take a polynomial $f \in \mathbb{Z}_p[x]$.

Suppose, for simplicity, that f is squarefree¹.

 1 has no repeated factors. The map $f \mapsto f/\gcd(f,\,f^{\,\prime})$ deletes repeated factors.

Suppose p is prime. Let \mathbb{Z}_p be the field of integers mod p .

Take a polynomial $f \in \mathbb{Z}_p[x]$.

Suppose, for simplicity, that f is squarefree 1 .

 1 has no repeated factors. The map $f \mapsto f/\gcd(f,\,f^{\,\prime})$ deletes repeated factors.

Suppose p is prime. Let \mathbb{Z}_p be the field of integers mod p .

Take a polynomial $f \in \mathbb{Z}_p[x]$.

Suppose, for simplicity, that f is squarefree 1 .

 1 has no repeated factors. The map $f \mapsto f/\gcd(f,\,f^{\,\prime})$ deletes repeated factors.

Problem Motivation

Let's get the obvious out of the way.

We can theoretically find the factors of *f* with a brute force search.

Let's get the obvious out of the way.

We can theoretically find the factors of *f* with a brute force search.

 \blacktriangleright this is boring

Let's get the obvious out of the way.

We can theoretically find the factors of *f* with a brute force search.

 \blacktriangleright this is boring (and slow)

Observation 1 We don't have to find every factor in one go.

Observation 1 We don't have to find every factor in one go.

If we can reliably produce even **just one** non-trivial divisor of *f*, then repeated application of our procedure will suffice to find every factor.

Suppose *f* has factors f_1, f_2, \ldots, f_n

A non-trivial divisor *g* of *f* must contain at least one factor *fⁱ* of *f*

We might say that *g* splits *f* in two.

Suppose *f* has factors f_1, f_2, \ldots, f_n

A non-trivial divisor *g* of *f* must contain at least one factor *fⁱ* of *f*

We might say that *g* splits *f* in two.

Suppose *f* has factors f_1, f_2, \ldots, f_n

A non-trivial divisor *g* of *f* must contain at least one factor *fⁱ* of *f* We might say that *g* splits *f* in two.

If we can come up with a findNonTrivialDivisor function, our factoring algorithm might look something like this:

```
1 factor :: Polynomial -> Set Polynomial
2 factor f = case findNonTrivialDivisor f of
3 Just g \rightarrow4 let h = f / g in
5 Set.union ( factor g ) ( factor h )
6 Nothing ->
7 -- f is irreducible
8 Set.singleton f
```
1. At least one factor of *f* divides *g*

2. At least one factor of *f* doesn't divide *g*

3. *g* divides *f*

1. At least one factor of *f* divides *g* 2. At least one factor of *f* doesn't divide *g* 3. *g* divides *f*

- 1. At least one factor of *f* divides *g*
- 2. At least one factor of *f* doesn't divide *g*
- 3. *g* divides *f*

- 1. At least one factor of *f* divides *g*
- 2. At least one factor of *f* doesn't divide *g*
- 3. *g* divides *f*

- 1. At least one factor of *f* divides *g*
- 2. At least one factor of *f* doesn't divide *g*
- 3. *g* divides *f*

- 1. At least one factor of *f* divides *g*
- 2. At least one factor of *f* doesn't divide *g*
- 3. All the factors of *g* divide *f*

- 1. At least one factor of *f* divides *g*
- 2. At least one factor of *f* doesn't divide *g*
- 3. All the factors of *g* divide *f*

the map $g \mapsto \gcd(f, g)$ deletes the factors of g that don't divide f!

- 1. At least one factor of *f* divides *g*
- 2. At least one factor of *f* doesn't divide *g*
- 3. All the factors of *q* divide *f* Apply $q \mapsto \gcd(f, q)$!

the map $g \mapsto \gcd(f, g)$ deletes the factors of g that don't divide f!

Where might we find such a polynomial *g*?

It's kinda stupid to look for *g* in all of $\mathbb{Z}_p[x]$

The majority of these polynomials have degree greater than that of *f*, and so do not divide it.

$$
D_f = \{ \, h \in \mathbb{Z}_p[x] \; : \; \deg\left(h\right) < \deg\left(f\right) \, \}
$$

Where might we find such a polynomial *g*?

```
It's kinda stupid to look for g in all of \mathbb{Z}_p[x]
```
The majority of these polynomials have degree greater than that of *f*, and so do not divide it.

$$
D_f \ = \ \{\, h \in \mathbb{Z}_p[x] \; : \; \deg\,(h) < \deg\,(f) \,\}
$$

Where might we find such a polynomial *g*?

It's kinda stupid to look for *g* in all of $\mathbb{Z}_p[x]$

The majority of these polynomials have degree greater than that of *f*, and so do not divide it.

$$
D_f = \{ h \in \mathbb{Z}_p[x] \; : \; \deg(h) < \deg(f) \}
$$

Where might we find such a polynomial *g*?

It's kinda stupid to look for *g* in all of $\mathbb{Z}_p[x]$

The majority of these polynomials have degree greater than that of *f*, and so do not divide it.

Instead, we should search only the set of polynomials whose degree is less than that of *f*

$D_f = \{ h \in \mathbb{Z}_p[x] : \text{deg}(h) < \text{deg}(f) \}$

Where might we find such a polynomial *g*?

It's kinda stupid to look for *g* in all of $\mathbb{Z}_p[x]$

The majority of these polynomials have degree greater than that of *f*, and so do not divide it.

$$
D_f = \{ h \in \mathbb{Z}_p[x] : \deg(h) < \deg(f) \}
$$

We've reduced our problem, finding all the factors of *f*, to the following problem:

Find any $g \in D_f$ such that:

- 1. At least one factor of *f* divides *g*
- 2. At least one factor of *f* doesn't divide *g*

We will call such polynomials **based**

We've reduced our problem, finding all the factors of *f*, to the following problem:

Find any $q \in D_f$ such that:

- 1. At least one factor of *f* divides *g*
- 2. At least one factor of *f* doesn't divide *g*

We will call such polynomials **based**

 \blacktriangleright what's next?

Observation 2 This feels like a quotient ring situation.

Observation 2 This feels like a quotient ring situation.

Consider the ring of polynomials mod *f*

$$
A_f \;\overset{\text{def}}{=}\; {\mathbb{Z}}_p[x]\,/\, \langle\, f\,\rangle
$$

Observation 2 This feels like a quotient ring situation.

Consider the ring of polynomials mod *f*

$$
A_f \stackrel{\mathsf{def}}{=} \mathbb{Z}_p[x]/\left\langle f \right\rangle
$$

Note. this is basically *D^f* but closed under multiplication.

The Quotient Ring

Does our new multiplication (\cdot) on A_f preserve the properties we care about?

If *g* and *h* are based, is $g \cdot h$ based?

The Quotient Ring

Does our new multiplication (\cdot) on A_f preserve the properties we care about?

If g and h are based, is $g \cdot h$ based?

The Quotient Ring

Suppose *g* is based

wlog write $gcd(f, q) = f_1 \cdots f_k$

Now $h = f/gcd(f, g) = f_{k+1} \cdots f_n$ is also based

Notice that every factor of f divides $g \cdot h$

So *g · h* isn't based
Suppose *g* is based

wlog write $gcd(f, g) = f_1 \cdots f_k$

Now $h = f/gcd(f, g) = f_{k+1} \cdots f_n$ is also based

Notice that every factor of f divides $g \cdot h$

Suppose *g* is based

wlog write $gcd(f, q) = f_1 \cdots f_k$

Now $h = f/gcd(f, g) = f_{k+1} \cdots f_n$ is also based

Notice that every factor of f divides $g \cdot h$

Suppose *g* is based

wlog write $gcd(f, q) = f_1 \cdots f_k$

Now $h = f/gcd(f, g) = f_{k+1} \cdots f_n$ is also based

Notice that every factor of f divides $g \cdot h$

Suppose *g* is based

wlog write $gcd(f, g) = f_1 \cdots f_k$

Now $h = f/gcd(f, g) = f_{k+1} \cdots f_n$ is also based

Notice that every factor of f divides $g \cdot h$

 $g \cdot h$ isn't based.

frick

Suppose *g* is based

wlog write $gcd(f, g) = f_1 \cdots f_k$

Now $h = f/gcd(f, g) = f_{k+1} \cdots f_n$ is also based

Notice that every factor of f divides $g \cdot h$

Theorem (Chinese remainder)

Suppose R is a commutative ring, and I_1, I_2, \ldots, I_n *are ideals of R such that for every pair i, j of non-equal indices*

$$
R = \{ ax + by : a \in I_i, b \in I_j, x, y \in R \}
$$

Then, the function

$$
\sigma: R/\bigcap_{i=1}^{n} I_i \to R/I_1 \times R/I_2 \times \cdots \times R/I_n
$$

$$
[r] \mapsto ([r], [r], \dots, [r])
$$

is a ring isomorphism.

Theorem (Chinese remainder)

Suppose R is a commutative ring, and I_1, I_2, \ldots, I_n *are ideals of R such that for every pair i, j of non-equal indices*

$$
R = \{ ax + by : a \in I_i, b \in I_j, x, y \in R \}
$$

Then, the function

$$
\mathbb{P}: R/\bigcap_{i=1}^{n} I_i \to R/I_1 \times R/I_2 \times \cdots \times R/I_n
$$

$$
[r] \mapsto ([r], [r], \dots, [r])
$$

is a ring isomorphism.

Notice that

$$
\langle f \rangle = \langle f_1 \rangle \cap \langle f_2 \rangle \cap \cdots \cap \langle f_n \rangle
$$

Moreover, it follows from the Chinese remainder theorem that there is an isomorphism

$$
\sigma: A_f \to \mathbb{Z}_p[x]/\langle f_1 \rangle \times \mathbb{Z}_p[x]/\langle f_2 \rangle \times \cdots \times \mathbb{Z}_p[x]/\langle f_n \rangle
$$

The map

$$
\sigma : g \mapsto (g \bmod f_1, g \bmod f_2, \ldots, g \bmod f_n)
$$

is an isomorphism

Now it's obvious that if g and h are based, then $g \cdot h$ is either based or zero.

$$
\sigma(g \cdot h) = \sigma(g) \cdot \sigma(h)
$$

= (0, *, ..., *) \cdot (*, 0, ..., 0)
= (0, *, * \cdot 0, ..., * \cdot 0)
= (0, 0, ..., 0)

Moreover, if $g \cdot h$ is based or zero then at least one of g or h is based or zero.

 \blacktriangleright if $\sigma(g)$ is zero in the i^{th} component, then so is $\sigma(g \cdot h)$

Notice that if g is based, then g^k is based for every positive $k.$

$$
\sigma(g^k) = \sigma(g)^k = (*, \cdots, 0, \cdots, *)^k = (*, \cdots, 0, \cdots, *)
$$

The set of based polynomials is closed under exponentiation.

Give a name to the exponentiation map:

$$
Q_k: A_f \to A_f
$$

$$
g \mapsto g^k
$$

At this point we must make a sacrifice.

We must abandon some based polynomials.

frick

We're going to pick some k and look at the subset in A_f that is fixed by *Q^k*

We're going to pick some k and look at the subset in A_f that is fixed by *Q^k*

 \blacktriangleright which k should we pick?

We're going to pick some k and look at the subset in A_f that is fixed by *Q^k*

- \blacktriangleright which k should we pick?
- \blacktriangleright what properties do we want?

Suppose *g* and *h* are in $fix(Q_k)$

$$
Q_k(g \cdot h) = (g \cdot h)^k = g^k \cdot h^k = g \cdot h
$$

Suppose g and h are in fix(Q_k)

$$
Q_k(g \cdot h) = (g \cdot h)^k = g^k \cdot h^k = g \cdot h
$$

 \blacktriangleright fix(Q_k) is closed under multiplication

Suppose *g* and *h* are in $fix(Q_k)$

$$
Q_k(g \cdot h) = (g \cdot h)^k = g^k \cdot h^k = g \cdot h
$$

 \blacktriangleright fix(Q_k) is closed under multiplication \blacktriangleright is it closed under addition?

Suppose *g* and *h* are in $fix(Q_k)$

$$
Q_k(g \cdot h) = (g \cdot h)^k = g^k \cdot h^k = g \cdot h
$$

 \blacktriangleright fix(Q_k) is closed under multiplication \blacktriangleright is it closed under addition?

$$
Q_k(g + h) = (g + h)^k = g^k + h^k = g + h
$$

Suppose *g* and *h* are in $fix(Q_k)$

$$
Q_k(g \cdot h) = (g \cdot h)^k = g^k \cdot h^k = g \cdot h
$$

 \blacktriangleright fix(Q_k) is closed under multiplication \blacktriangleright is it closed under addition?

$$
Q_k(g + h) = (g + h)^k = g^k + h^k = g + h
$$

Suppose *g* and *h* are in $fix(Q_k)$

$$
Q_k(g \cdot h) = (g \cdot h)^k = g^k \cdot h^k = g \cdot h
$$

 \blacktriangleright fix(Q_k) is closed under multiplication \blacktriangleright is it closed under addition?

$$
Q_k(g+h) = (g+h)^k = g^k + h^k = g + h
$$

 \triangleright set $k = p$ (the same p as in $\mathbb{Z}_p[x]$)

$$
B_f \stackrel{\text{def}}{=} \text{fix}(Q_p)
$$

$$
B_f \stackrel{\text{def}}{=} \text{fix}(Q_p)
$$

Turns out *B^f* is kinda epic.

$$
B_f \stackrel{\mathsf{def}}{=} \mathsf{fix}(Q_p)
$$

Turns out *B^f* is kinda epic.

So epic, infact, that it has a name.

$$
B_f \stackrel{\mathsf{def}}{=} \mathsf{fix}(Q_p)
$$

Turns out *B^f* is kinda epic.

So epic, infact, that it has a name.

B^f is called the Berlekamp subalgebra.

Some facts:

1. \mathbb{Z}_p ⊂ B_f ⊂ A_f ⊂ $\mathbb{Z}_p[x]$

Some facts:

1. \mathbb{Z}_p ⊂ B_f ⊂ A_f ⊂ $\mathbb{Z}_p[x]$ 2. Q_p is a linear map on A_f

Some facts:

1. \mathbb{Z}_p ⊂ B_f ⊂ A_f ⊂ $\mathbb{Z}_p[x]$ 2. Q_p is a linear map on A_f 3. $B_f = fix(Q_p)$

\n- 1.
$$
\mathbb{Z}_p \subset B_f \subset A_f \subset \mathbb{Z}_p[x]
$$
\n- 2. Q_p is a linear map on A_f
\n- 3. $B_f = \text{fix}(Q_p) = \{x \in A_f : x^p = x\}$
\n

\n- 1.
$$
\mathbb{Z}_p \subset B_f \subset A_f \subset \mathbb{Z}_p[x]
$$
\n- 2. Q_p is a linear map on A_f
\n- 3. $B_f = \text{fix}(Q_p) = \{x \in A_f : x^p - x = 0\}$
\n

\n- 1.
$$
\mathbb{Z}_p \subset B_f \subset A_f \subset \mathbb{Z}_p[x]
$$
\n- 2. Q_p is a linear map on A_f
\n- 3. $B_f = \text{fix}(Q_p) = \{x \in A_f : x^p - x = 0\} = \text{ker}(Q_p - \text{id})$
\n
We can encode $Q_f - id$ as an A_f valued matrix.

 2 other methods are available

We can encode $Q_f - id$ as an A_f valued matrix.

Then we can use Gaussian elimination 2 to produce a basis for its nullspace.

 2 other methods are available

We can encode $Q_f - id$ as an A_f valued matrix.

Then we can use Gaussian elimination 2 to produce a basis for its nullspace.

The members of B_f are precisely the linear combinations of the elements of this basis!

 2 other methods are available

Lock in guys.

You ain't ready for this.

Have you seen this equality? For every $h \in \mathbb{Z}_p[x]$

$$
\prod_{c \in \mathbb{Z}_p} (h+c) = h^p - h
$$

proof on joelrichardson.au if u want

$$
\prod_{c \in \mathbb{Z}_p} (h + c) = 0 \mod f
$$

For every $h \in B_f$

$$
\prod_{c \in \mathbb{Z}_p} (h + c) = 0 \mod f
$$

 \blacktriangleright the product of the $(h + c)$ s is based or zero

$$
\prod_{c \in \mathbb{Z}_p} (h + c) = 0 \mod f
$$

- \blacktriangleright the product of the $(h + c)$ s is based or zero
- \blacktriangleright at least one $h + c$ is based or zero!

$$
\prod_{c \in \mathbb{Z}_p} (h + c) = 0 \mod f
$$

- \blacktriangleright the product of the $(h + c)$ s is based or zero
- \triangleright at least one $h + c$ is based or zero!

$$
\prod_{c \in \mathbb{Z}_p} (h + c) = 0 \mod f
$$

- \blacktriangleright the product of the $(h + c)$ s is based or zero
- \blacktriangleright at least one $h + c$ is based!

$$
\prod_{c \in \mathbb{Z}_p} (h + c) = 0 \mod f
$$

- \blacktriangleright the product of the $(h + c)$ s is based or zero
- \blacktriangleright at least one $h + c$ is based!
- \triangleright at least one $gcd(f, h + c)$ is a non-trivial divisor of f!

Recall our earlier code block:

```
1 factor :: Polynomial -> Set Polynomial
2 factor f = case findNonTrivialDivisor f of
3 Just g \rightarrow4 let h = f / g in
5 Set.union ( factor g ) ( factor h )
6 Nothing ->
7 -- f is irreducible
8 Set.singleton f
```
We can now implement findNonTrivialDivisor

```
1 findNonTrivialDivisor :: Polynomial -> Maybe Polynomial
2 findNonTrivialDivisor f = case nullspaceBasis (berlekampMatrix f) of
3 basis | length basis \langle 2 - \rangle4 Nothing
5 basis ->
6 let h = head basis in
7 find ( isNonZeroNonUnit ) [ gcd f (h + c) | c <- field ]
8 -- dont forget to apply the ^^^ gcd we talked about earlier!
```
Any Questions???

Gaussian elimination

freshman's

dream

Chinese remainder theorem

Fermat's little theorem more.

WE CAN DO BETTER

WE CAN DO BETTER

We know that the following is a multiple of *f*

$$
\prod_{c\,\in\,\mathbb{Z}_p} h + c
$$

WE CAN DO BETTER

We know that the following is a multiple of *f*

$$
\prod_{c\,\in\,\mathbb{Z}_p} h + c
$$

So,

$$
f = \gcd\left(f, \prod_{c \in \mathbb{Z}_p} h + c\right)
$$

WE CAN DO BETTER

We know that the following is a multiple of *f*

$$
\prod_{c\,\in\,\mathbb{Z}_p} h + c
$$

So,

$$
f = \gcd\left(f, \prod_{c \in \mathbb{Z}_p} h + c\right)
$$

Pretty easy to show that

$$
f = \prod_{c \in \mathbb{Z}_p} \gcd(f, h + c)
$$

Berlekamp's Algorithm

```
1 factorBerlekamp :: Polynomial -> Set Polynomial
2 factorBerlekamp f = case nullspaceBasis (berlekampMatrix f) of
3 basis | length basis > 1 ->
4 let h = head basis in -- element of B_f
5 let terms = filter
6 ( isNonZeroNonUnit )
7 \quad [ gcd f (h + c) | c <- field ]
8 in Set.unionMap factorBerlekamp terms
9 basis \rightarrow10 basis -- f is irreducible
```
Berlekamp's Algorithm

```
1 factorBerlekamp :: Polynomial -> Set Polynomial
2 factorBerlekamp f = case nullspaceBasis (berlekampMatrix f) of
3 basis | length basis > 1 ->
4 let h = head basis in -- element of B_f
5 let terms = filter
6 ( isNonZeroNonUnit )
7 \quad [ gcd f (h + c) | c <- field ]
8 in Set.unionMap factorBerlekamp terms
9 basis \rightarrow10 basis -- f is irreducible
```
funny: the dimension of B_f is the number of factors of f .