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Uncapacitated Facility Location Problem

Imagine you own n grocery stores in some geographical area, and
you want to build warehouses to supply them.
After some surveying you identify m possible locations to build
your warehouses and you calculate the cost of building a warehouse
at each location, and the cost of supplying each store from each
possible warehouse.



Setup for n = m = 30
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Question: what is the cheapest way to supply all the stores?



Linear Programming Problems

In brief, a linear programming problem (or LP) is of the following
form.

min
x∈Rn

cᵀx

subject to,

Ax ≤ b
x ≥ 0

where c ∈ Rn,b ∈ Rm,A ∈ Rm×n



What is so cool about these problems.

If we can convert our problem into this form then we can solve it
(to optimality) using the Simplex method.
Often we want our variables to be integers (creating an IP) or we
have a mix of integer and continuous variables (creating a MIP).
We solve these using a branch and bound algorithm.



IP Formulation of the UFL

Sets:

I I - set of stores

I J - set of possible warehouse locations

Data:

I bj ,∀j ∈ J - cost of building warehouse m

I cij ,∀i ∈ I , j ∈ J - cost of supplying store i with warehouse j .

Variables:

I yj ∈ {0, 1} - 1 if we build a warehouse in location j , 0
otherwise.

I xi j ∈ {0, 1} - 1 if we supply store i with warehouse j , 0
otherwise.



MIP Formulation of the UFL

Objective:

min
∑
j∈J

bjyj +
∑
i∈I

∑
j∈J

cijxij

Constraints:

I Each store has to be supplied.∑
j∈J

xij = 1,∀i ∈ I (Supply)

I Warehouses have to be built to supply stores.

xij ≤ yj ,∀i ∈ I , j ∈ J (Build)



Code time

I Locations are picked in a 200× 200 square.

I Connection costs are equal to Euclidean distance plus
x ∼ U[0, 70].

I Build costs are equal to y ∼ U[75, 125].



Solution for small n.
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Solves in about 0.02 seconds. ¨̂



Setup for n = m = 300

0 25 50 75 100 125 150 175 200
0

25

50

75

100

125

150

175

200 Stores
Potential Warehouses



Solution for big n.
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Solves in about 4 minutes. _̈



Analysis of the IP Formulation

We increased the problem size by a factor of 10 but our time
increased by a factor of 12650.
Furthermore, our data makes the problem a lot easier. If we use
completely random connection costs by the four minute mark the
MIP gap is still 13.1%.



What happened?

Our current formulation is doing a lot of work to allocate stores to
warehouses. We have n ×m, X variables and n ×m constraints
purely to manage store allocation.
In reality allocating the stores is an incredibly easy problem once
we have a set of built warehouses.

For each store we simply choose the built warehouse with the
lowest connection cost (i.e. the closest warehouse).



Abstract Benders Decomposition

Suppose we have some integer programming problem,

min cᵀy +
∑
ω∈Ω

Θω(y)

subject to,

Ay ≤ b
y ≥ 0

where each Θω is some complicated function of y (called a BSP)
and Θω(y?) =∞ =⇒ y? is not a feasible solution.



Benders Master Problem

By introducing new variables θω we can construct a Benders
Master Problem (BMP)

min cᵀy +
∑
ω∈Ω

θω

Subject to,

Ay ≤ b
OptCuts

FeasCuts

where OptCuts and FeasCuts are sets of constraints which are
initially empty.



Algorithm

1. Solve the BMP to get a solution y?

2. For each subproblem (ω ∈ Ω)

2.1 Calculate Θω(y?)
2.2 If Θω(y?) =∞ add a feasibility cut to the BMP.
2.3 If Θω(y?) > θω add an optimality cut to the BMP.

3. If cuts were added go to Step 1, else break.

Feasibility cuts are of the form,

0 ≥ Γ + γᵀy

Optimality cuts are of the form,

θω ≥ Γ + γᵀy



Constraints on our constraints

0 ≥ Γ + γᵀy (Feasibility Cut)

θω ≥ Γ + γᵀy (Optimality Cut)

A valid feasibility cut must satisfy,

I 0 < Γ + γᵀy?

I 0 < Γ + γᵀy =⇒ Θω(y) =∞
A valid optimality cut must satisfy,

I Θω(y?) = Γ + γᵀy?

I Θω(y) ≥ Γ + γᵀy



Bending the UFL

Our Benders Master Problem is the following,

min
∑
j∈J

bjyj +
∑
i∈I

θi

subject to, ∑
j∈J

yj ≥ 1

and where our θi variables will approximate

Θi (y) = min
j∈J|yj=1

cij

i.e. we have a subproblem for each store.



Bending the UFL

And for each subproblem we will add the following cut if
Θi (y?) > θi ,

θi ≥ Θ?
i −

∑
j∈J|cij<Θ?

i

(Θ?
i − cij) yj

where Θ?
i = Θi (y?).



Code time again

I Random Data (with n = m = 200) - (we’re still
mathematicians, we would like our methods to work in the
general case).

I Benders ran in 7 minutes 26 seconds and added 1979 cuts.

I Naive MIP ran in 37 minutes, 43 seconds.



Constructing Cuts

Abstract Benders Decomposition requires you to invent cuts based
on specific knowledge about Θω.
Can get very complex as Θω gets more interesting.
However, if Θω is another Mixed Integer Program, we have,

1. A full Benders Decomposition (not abstract)

2. A closed form solution for master problem cuts.



Benders Decomposition

min
x ,y

cᵀx + f ᵀy

Subject to,

Ax + By ≤ b
Dy ≤d

x ≥ 0, y ≥ 0

Is a problem in our general form with Θ(y?) given by the following
MIP,

min
x

cᵀx

Subject to,

Ax ≤ (b − By?)

x ≥ 0



Duality
The Dual of the BSP is,

max
u

(b − By?)ᵀu

Subject to,

Aᵀu ≤ c
u ≤ 0

Duality theory says the optimal objective values of the dual and
primal problem are equal. And that for all feasible solutions the
objective of the primal is ≥ the objective of the dual. Which
implies that,

cᵀx = (b − By?)ᵀu?

cᵀx ≥ (b − By)ᵀu?

so the below is a valid feasibility cut.

θ ≥ (b − By)ᵀu?



Thank you

I have never watched a complete episode of Futurama in my life. I
condone the actions of this character if they are good and

condemn them if they are bad.


