Mercator projection

Henry Wood

The University of Queensland

Question

What is the best method for constructing a flat map of the spherical Earth?

Regular Surfaces

 $f : A \subseteq \mathbb{R}^m \to B \subseteq \mathbb{R}^n$ is a diffeo. if f and f^{-1} are smooth A and B are diffeomorphic if there's a diffeo. between them A set $S \subset \mathbb{R}^3$ is a regular surface if

Figure: A Regular Surface (Tapp)

Examples

- Sphere S^2 and ellipsoid E
- Plane \mathbb{R}^2 and paraboloid $z = x^2 + y^2$
- Graph of smooth $f: U \to \mathbb{R}$ and domain U

Figure: Diffeomorphisms (Tapp)

Tangent Plane

 $T_p S = \{\gamma'(0) : \gamma \text{ is a regular curve in } S \text{ and } \gamma(0) = p\}$

Let $\sigma: U \subseteq \mathbb{R}^2 \to V \subseteq S$ be a diffeo. with $p \in V$ $T_p S = \operatorname{span} \{ \sigma_x(p), \sigma_y(p) \}$

Differential

Smooth $f: A \to B$ the differential $df_p: T_pA \to T_{f(p)}B$ $df_p(v) = (f \circ \gamma)'(0)$

 γ is a regular curve s.t. $\gamma(0) = p$ and $\gamma'(0) = v$.

Equiareal and Conformal Maps

Let A, B be regular surfaces and let $f : A \rightarrow B$ diffeo. f is called an isometry if it preserves the inner product:

$$\langle v, w \rangle = \langle df_p(v), df_p(w) \rangle,$$

equiareal if it preserves area:

$$\|df_p\|:=rac{|df_p(v) imes df_p(w)|}{|v imes w|}=1,$$

conformal if it preserves angles:

$$\angle(v,w) = \angle(df_p(v),df_p(w))$$

(for all $p \in A$ and for all $v, w \in T_pA$).

Archimedes

Consider the map $f: S^2 \setminus \{N, S\} \to C \subseteq \mathbb{R}^3$ given by

$$f(x, y, z) = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}, z\right)$$

Figure: Archemides

Archimedes

Claim

Archimedes' map is equiareal

Proof.

Spherical coordinates $\sigma: (0,\pi) imes (0,2\pi) o S^2$

$$\sigma(u, v) = (\sin u \cos v, \sin u \sin v, \cos u)$$
$$(f \circ \sigma)(u, v) = (\cos v, \sin v, \cos u)$$

Calculate $\|df_p\|$ using σ_u and σ_v .

$$df_p(\sigma_u) = (f \circ \sigma)_u = (0, 0, -\sin v)$$

$$df_p(\sigma_v) = (f \circ \sigma)_v = (-\sin u, \cos u, 0)$$

$$\|df_p\| = \frac{|df_p(\sigma_u) \times df_p(\sigma_v)|}{|\sigma_u \times \sigma_v|} = \frac{|\sin v|}{|\sin v|} = 1$$

Archimedes Map

Figure: Archemides Map

Stereographic Projection

Consider $\Phi: S^2 \setminus \{N\} \to \mathbb{R}^2$ given by $\Phi(x, y, z) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$

Claim

The stereographic projection Φ is conformal

Figure: Stereographic Projection (Nam-Hoon)

Let
$$p \in S^2 \setminus \{N\}$$
, $v_1, v_2 \in T_p S^2$, $\theta = \angle (v_1, v_2)$.

Figure: Stereographic Projection Conformal 1 (Nam-Hoon)

Planes $P_1, P_2 \subseteq S^2$ through p, N tangent to v_1, v_2 resp. Let $C_1 = S^2 \cap P_1$ and $C_2 = S^2 \cap P_2$. Note that $\theta = \angle_p(C_1, C_2) = \angle_N(C_1, C_2)$

Figure: Stereographic Projection Conformal 2 (Nam-Hoon)

Let
$$L_1 = \Phi(C_1) = P_1 \cap P_{z=0}$$
 and $L_2 = \Phi(C_2) = P_2 \cap P_{z=0}$.

Figure: Stereographic Projection Conformal 3 (Nam-Hoon)

Let
$$L'_1 = P_1 \cap P_{z=1}$$
 and $L'_2 = P_2 \cap P_{z=1}$.

Because $P_{z=0} \parallel P_{z=1}$, we have $L_1 \parallel L_1'$ and $L_2 \parallel L_2'$

$$\angle_{\Phi(\rho)}(L_1,L_2) = \angle_N(L'_1,L'_2) = \angle_N(C_1,C_2) = \theta$$

Figure: Stereographic Projection Conformal 5 (Nam-Hoon)

Stereographic Projection Map

Figure: Stereographic Projection Map

Mercator Projection

Goal: modify the spherical coordinate chart to make it conformal. $\sigma: (0,\pi) \times (0,2\pi) \rightarrow S^2$

$$\sigma(u, v) = (\sin u \cos v, \sin u \sin v, \cos u)$$

Fact: $f : A \to B$ is conformal \iff for all $p \in A$ there are $v, w \in T_pA$ such that

$$v\perp w, \ df_{
ho}(v)\perp df_{
ho}(w) \ ext{and} \ rac{|df_{
ho}(v)|}{|v|}, rac{|df_{
ho}(w)|}{|w|}.$$

Observe $\sigma_u \perp \sigma_v$ but $|\sigma_u| = 1$ and $|\sigma_v| = \sin u$. Want $|\sigma_v| = 1$ Compose with $f : (a, b) \times (0, 2\pi) \rightarrow (0, \pi) \times (0, 2\pi)$

 $f(t,v) = (\phi(t),v)$

$$|(\sigma \circ f)_t| = |\phi'(t)|, \ |(\sigma \circ f)_v| = \sin(\phi(t)).$$

Mercator Projection

ODE

$$\phi'(t) = \sin(\phi(t))$$

Solution

$$\phi(t) = 2\cot^{-1}(e^{-t})$$

over $(-\infty,\infty)$ where $\phi(0) = \frac{\pi}{2}$.

Choose finite domain $(-L, L) \times (0, 2\pi)$ nbhds of poles are uncharted

Mercator Projection

Bibliography

Nam-Hoon Lee et al.

Geometry: from isometries to special relativity. Springer, 2020.

Kristopher Tapp.

Differential geometry of curves and surfaces.

Springer, 2016.