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Motivation

Figure: a cool image
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Disclaimer
This talk is about category theory.

...sorry everyone.
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Categories

Definition
A category is a four tuple ( C,A,Hom, ◦ )

▶ C is a set; the set of objects.
▶ A is a set; the set of arrows.
▶ Hom−1 : A→ C × C is function specifying a start and end

for each arrow.
▶ Note that so far, this is exactly a directed multigraph.
▶ (◦) : ∀a,b,c ∈ C,Hom(b,c)×Hom(a,b)→ Hom(a,c) is

function; the composition of arrows.
▶ For each a ∈ C there is an element 1a ∈ Hom(a,a) that is

an identity with respect to (◦)
▶ The function (◦) is associative; h ◦ (g ◦ f) = (h ◦ g) ◦ f
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Categories

Notation
Suppose f is arrow from a to b in some category.
It is cumbersome to write Hom−1 f = (a,b)
It is cumbersome to write f ∈ Hom(a,b)
Instead, write

f : a→ b
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Categories

Example category: ∆, the category of totally ordered sets and
order preserving functions.

▶ Objects are the sets [n] = { 0, 1, 2, . . . , n }, for each n.
▶ Arrows f : [n]→ [m] are the strictly order preserving

functions, i.e. f such that f(i ) < f(j ) if i < j.
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Categories

Objects Homomorphisms (Arrows)

sets functions
vector spaces linear maps

groups group homomorphisms
rings ring homomorphisms

measure spaces measurable functions
topological spaces continuous functions
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Categories

Definition
A functor F from a category C to a category D is basically a
graph homomorphism. It consists of a map

F : AC → AD

such that

F (g ◦ f ) = F g ◦ F f

F 1x = 1y (write F x = y )

if f : x→ y then F f : F x → F y
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Categories - putting it all together

Example functor: a functor F : ∆op → Set is

▶ a set F[n] for each object [n] in ∆

▶ a function Ff : F[n]→ F[m] for each f : [n]← [m] in ∆

▶ (such that rules blah blah blah)

Okay, but like, what?
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Breathe. Actual talk begins here.
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Definition (geometric simplex)
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Definition (geometric simplex)

Choose n linearly independent points from Rm.
Choose another, not necessarily linearly independent, point.
Take the (convex) set of points between them.
Such a set is called a geometric n-simplex

v0

v1

v2

Figure: Geometric 2-simplex
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Geometric simplices

These are not complicated objects.

0-simplex 1-simplex 2-simplex 3-simplex

· · ·

Figure: Various geometric simplices
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Geometric simplices
Take a geometric simplex, and pick any subset of its vertices.
This subset defines another (lower-dimensional) geometric
simplex. Such simplices are called the faces of the original
simplex.
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v2

Figure: The faces of a geometric 2-simplex
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Definition (simplicial complex)

A simplicial complex is a set X of geometric simplices such that
1. for each x ∈ X every face of x is in X,
2. for every x, y ∈ X the intersection x ∩ y, if non-empty, is a

face of each.

Figure: A simplicial complex

17 / 34



Figure: A torus as a simplicial complex
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Moving away from geometry

v0
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Moving away from geometry

≈
(
{x, y, a, b, c, d, e, f, v0, v1, v2, v3, v4} , ⊆

)

20 / 34



Moving away from geometry

Oh no, we’ve lost dimensionality!

Replace our set X with (Xn)∞n=1

v0

v1

v2

v3
v4

x

y

a
b c

de

f X0 = { v0, v1, v2, v3 }
X1 = { a, b, c, d, e, f }
X2 = { x, y }
X3 = ∅
...
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Moving away from geometry

An n-simplex should have n + 1 (n− 1)-faces; one for each
vertex.

0-simplex

v0

1-simplex

v0

v1

2-simplex
v0

v1

v2

3-simplex
v0

v1

v2

v3

Figure: Various geometric simplices
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Moving away from geometry

The idea – we replace the subset-arrows with function-arrows.
An arrow x→ a says “move from x to a by using deleting vertex
blank”.

x y

a b c d e f

v0 v1 v2 v3 v4
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Moving away from geometry

The idea – we replace the subset-arrows with function-arrows.
An arrow x→ a says “move from x to a by using deleting vertex
blank”. We flatten the lattice, so we have one object per layer.

X2

X1

X0
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Moving away from geometry

Q: How do we turn two distinct arrows x→ a and y→ d into
one arrow X2 → X1?

A: Totally order the set of vertices, X0.
Now we can define a function di that deletes the ith smallest
vertex. This can be applied to both x and y.
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Moving away from geometry
Totally order X0 by v0 < v1 < v2 < v3 < v4. Define functions:

d2
0, d2

1, d2
2 : X2 → X1

d1
0, d1

1 : X1 → X0

We usually leave off the dimension specification. i.e. dk
i (x)

becomes di(x).

v0

v1

v2

v3
v4

x

y

a
b c

de

f d0(x) = c d0(y) = f
d1(x) = b d1(y) = e

d0(a) = v1 d0(b) = v2

d1(e) = v2 d1(f) = v3

(d1 ◦ d2)(x) = v0
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Moving away from geometry

v0

v1

v2

Figure: Geometric 2-simplex
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Simplicial sets

A simplicial set1 is a collection of sets (Xn)∞n=0 along with a
collection of functions (dn

0 , . . . ,dn
n : Xn → Xn−1)∞n=1 such that

for each i, j if i < j then di ◦ dj = dj−1 ◦ di

Turns out this is exactly a functor X : ∆op → Set!

1This is technically actually a delta-set, but don’t sweat it.
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Simplicial sets - What?

A functor F : ∆op → Set is
▶ a set F[n] for each object [n] in ∆

▶ Set F[n] = Xn and/or set Xn = F[n]

▶ a function Ff : F[n]→ F[m] for each f : [n]← [m] in ∆

▶ This one is a more involved

▶ (such that rules blah blah blah)
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Simplicial sets

Consider the functions Dn
i : [n− 1]→ [n] with Dn

i (j) = j for j < i
and Dn

i (j) = j + 1 for j ⩾ i.

0 0

1 1

2 2

3

Figure: Pictorial D2
1
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Simplicial sets

Theorem
Every map f : [n]→ [m] in ∆ is the composition Dk

i functions.
Moreover, Dn+1

j ◦Dn
i = Dn+1

i ◦Dn
j−1 if i < j

Proof
Exercise.
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Simplicial sets

v0

v2

v3

0 0

1 1

2 2

3

v0

v1

v2

v3

Figure: d3
1 and D3

1
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Simplicial sets

A functor F : ∆op → Set is
▶ a set F[n] for each object [n] in ∆

▶ Set F[n] = Xn and/or set Xn = F[n]
▶ a function Ff : F[n]→ F[m] for each f : [n]← [m] in ∆

▶ Set FDn
i = dn

i and/or dn
i = FDn

i

▶ (such that rules blah blah blah)

▶ (exercise.)
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the end.

(also every category is a simplicial set)
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Simplicial sets

Figure: A simplicial set
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