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Context

Skill-based matchmaking in competitive multiplayer games

Figure: A “gamer” playing a competitive multiplayer videogame

Matches should be fair and fun

We need a way to accurately model the skill of each player
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Aims

Our focus is the TrueSkill skill rating system, developed by Microsoft and
used for games such as Halo 3.

1 What does a skill rating system do?

2 A brief introduction to Bayesian inference

3 TrueSkill ’s model for a players skill

4 A remark on the 2018 sequel TrueSkill 2

TrueSkill is not the only skill rating system:

Elo

Glicko and Glicko 2
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What should a Skill Rating System do?

1 Accurately model a player’s skill to create fair games

2 Create incentives to play the game “properly”

Reward winning, penalise losing
Reward completing the objective, supporting teammates
Punish poor behaviour such as quitting

3 Be robust to manipulation

4 Be simple for a game developer to integrate

Easy to interpret (simple)
Low maintenance (independent)
Adapt to new games / gamemodes (flexible)
Low computational requirements (cheap)
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Bayesian Inference

(Statistical) Inference - predicting parameters using data e.g.

µ σ2

In Bayesian statistics parameters are considered to be random
variables

Skill can be modelled as a random variable, since players do not
always perform at the same level.

Bayesian statistics provides a tool to update our belief about a
parameter when given new information
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Bayesian Inference - The Idea

1 PRIOR: What do we currently believe about the parameter?

2 DATA: What is the relationship between the parameter and the data
we collected?

3 POSTERIOR: With this data in mind, how has our belief about the
parameter changed?

Initial Skill Match Data New Skill
performance update
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Bayesian Inference - The Belief

We want to formalise the idea of “belief”. Consider the parameter y .

“I know y ∈ [0, 1], but nothing more than that”

“I’m pretty sure y is around 0, but it could be any number”
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Bayesian Inference - The Belief

Other distributions

y ∼ U[0, 1]

f (y) =

{
1 if y ∈ [0, 1]
0 else

y ∼ Bin(n, p)

f (y) =

(
n
y

)
py (1− p)n−y

y ∼ N(µ, σ2)

f (y) =
1√
2πσ2

exp

(
−1

2σ2
(y − µ)2

)
and many more!
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Bayesian Inference - The Likelihood function

Specify a distribution of the data x given the parameter(s) of interest.

X ∼ Bin(n, p) ↔ f (x |p) =
(
n
x

)
px(1− p)n−x

Once data is obtained, say x = 3, it becomes a statement about the
likelihood of the parameter:

f (x |p) =
(
10
3

)
p3(1− p)7

p is the only unknown in the above equation.
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Performing Bayesian Inference

Suppose we want to predict a parameter y using data x.

1 PRIOR: Specify a prior distribution of y - f (y)

2 DATA: Specify a distribution for the data - f (x|y)

3 POSTERIOR: Perform the update to obtain the posterior
distribution using Bayes Rule:

f (y |x) ∝ f (x|y)f (y)
f (x)
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Example

We toss a coin 10 times and observe 3 heads. What is the probability p of
a head.

1 PRIOR: Take an uninformative prior

f (p) =

{
1 if p ∈ [0, 1]
0 else

2 DATA: The given data is the number of heads from coin tosses.

f (x |p) =
(
10
x

)
px(1− p)n−x

We are given that x = 3 - obtain a likelihood for p

f (x |p) =
(
10
3

)
p3(1− p)7
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Example Continued

3 POSTERIOR: Perform the update using Bayes Rule:

f (p|x) = f (x |p)f (p)
f (x)

=

(
10
3

)
p3(1− p)7 · 1

f (x)

∝ p3(1− p)7

∴ p|x ∼ Beta(4, 8)
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Example Continued

Figure: Prior and Posterior Distribution of p
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Example 2

A trickier problem

1 PRIOR: λ ∼ Gamma(α, β)

f (λ) =
βαλα−1 exp(−βλ)

Γ(α)

2 DATA: X ∼ Poisson(λ)

f (x |λ) = exp(−λ)λx

x!

3 POSTERIOR: Perform the update using Bayes Rule:

f (y |x) ∝ f (x|y)f (y)
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Example 2 Continued

3 POSTERIOR:

f (λ|x) ∝ f (x |λ)f (λ)

∝ exp(−λ)λx

x!

βαλα−1 exp(−βλ)

Γ(α)

∝ exp(−λ)λxλα−1 exp(−βλ)

∝ λx+α−1 exp(−(β + 1)λ)

λ|x ∼ Gamma(x + α, β + 1)
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Example 2 Continued

See Demo
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The TrueSkill Model

PRIOR: The players’ initial/prior skill is modelled by a normal
distribution

f (skill) ∼ N(µ, σ2)

σ2 = γ2

experience
+ τ2(t ′ − t)

skill decay

DATA: The players’ performance in a match is modelled by a normal
distribution

f (perf) ∼ N(skill, β2)

β is a tunable parameter that depends on how random games are.

POSTERIOR: Using Bayes rule:

f (skill’|perf) = f (perf|skill)f (skill)
f (perf)

Nazeef Hamid Bayesian Skill-based Matchmaking 8th March 2024 17 / 25



The TrueSkill Model

The posterior distribution can be approximated by a normal distribution.
The new skill rating µ′ assigned to the player is the mean of this
distribution.

Figure: Idealised skill rating update
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The TrueSkill Model

More complicated in reality:

f (skill′|perf, conditions) = f (perf|skill, conditions)f (skill)
f (perf|conditions)

“conditions” refer to aspects of a match that cannot be modelled

The problem is not solved analytically

Calculation can be performed efficiently using an algorithm such as
Expectation Propagation (EP)

EP is an iterative method that can approximate probability
distributions
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The TrueSkill Model

Figure: Skill ratings of several players in Halo 5
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Tuning the TrueSkill model

There are a variety of parameters in the model that give it flexibility:

µ0, σ0: The mean skill and skill variation of a brand new player

β2: Match randomness parameter

γ: Skill increase due to experience

τ2: Skill decay over time parameter

These would be learned from historical match data by choosing parameters
that best predict match outcomes.
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Evaluating the TrueSkill Model

Game Mode Number of Matches per Player

16 Players Free-For-All 3

8 Players Free-For-All 3

4 Players Free-For-All 5

2 Players Free-For-All 12

4 Teams/2 Players Per Team 10

4 Teams/4 Players Per Team 20

2 Teams/4 Players Per Team 46

2 Teams/8 Players Per Team 91

Table: Minimum matches per Player to obtain a confident skill rating
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TrueSkill 2

On historical match data from Halo 5, TrueSkill is only 52% accurate

TrueSkill2 is 68% accurate - substantial improvement

Additional factors that TrueSkill2 considers:

Performance includes individual statistics such as k/d ratio.
A quit is treated as a surrender
Skill is correlated with other gamemodes
Players in a squad are assumed to perform better

TrueSkill2 is planned for implementation into League of Legends
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Conclusion

A system for modelling the skill of players in competitive games

Some of the basic theory behind Bayesian inference

How the Bayesian toolkit is suited to sequential data problems

A novel application of statistics.
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