Skill-based Matchmaking with Bayesian Inference

Nazeef Hamid

UQMSS Math Talk — 8th March 2024

Nazeef Hamid

Bayesian Skill-based Matchmaking

8th March 2024

1/25

• Skill-based matchmaking in competitive multiplayer games

Figure: A "gamer" playing a competitive multiplayer videogame

- Matches should be fair and fun
- We need a way to accurately model the skill of each player

Our focus is the *TrueSkill* skill rating system, developed by Microsoft and used for games such as *Halo 3*.

- What does a skill rating system do?
- A brief introduction to Bayesian inference
- StrueSkill's model for a players skill
- A remark on the 2018 sequel TrueSkill 2

TrueSkill is not the only skill rating system:

- Elo
- Glicko and Glicko 2

What should a Skill Rating System do?

- Accurately model a player's skill to create fair games
- Oreate incentives to play the game "properly"
 - Reward winning, penalise losing
 - Reward completing the objective, supporting teammates
 - Punish poor behaviour such as quitting
- Be robust to manipulation
- Be simple for a game developer to integrate
 - Easy to interpret (simple)
 - Low maintenance (independent)
 - Adapt to new games / gamemodes (flexible)
 - Low computational requirements (cheap)

• (Statistical) Inference - predicting parameters using data e.g.

 $\mu \sigma^2$

- In Bayesian statistics parameters are considered to be random variables
- Skill can be modelled as a random variable, since players do not always perform at the same level.
- Bayesian statistics provides a tool to update our belief about a parameter when given new information

- **PRIOR:** What do we currently believe about the parameter?
- OATA: What is the relationship between the parameter and the data we collected?
- POSTERIOR: With this data in mind, how has our belief about the parameter changed?

Bayesian Inference - The Belief

We want to formalise the idea of "belief". Consider the parameter y.

• "I know $y \in [0, 1]$, but nothing more than that"

• "I'm pretty sure y is around 0, but it could be any number"

Other distributions

11[0 1]

•
$$y \sim 0[0,1]$$

$$f(y) = \begin{cases} 1 & \text{if } y \in [0,1] \\ 0 & \text{else} \end{cases}$$

• $y \sim Bin(n, p)$

$$f(y) = \binom{n}{y} p^{y} (1-p)^{n-y}$$

• $y \sim N(\mu, \sigma^2)$

$$f(y) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(rac{-1}{2\sigma^2}(y-\mu)^2
ight)$$

and many more!

3. 3

Specify a distribution of the data x given the parameter(s) of interest.

$$X \sim \mathsf{Bin}(n,p) \leftrightarrow f(x|p) = \binom{n}{x} p^x (1-p)^{n-x}$$

Once data is obtained, say x = 3, it becomes a statement about the likelihood of the parameter:

$$f(x|p) = \begin{pmatrix} 10\\ 3 \end{pmatrix} p^3 (1-p)^7$$

p is the only unknown in the above equation.

Suppose we want to predict a parameter y using data \mathbf{x} .

- **9 PRIOR:** Specify a prior distribution of y f(y)
- **② DATA:** Specify a distribution for the data $f(\mathbf{x}|y)$
- OSTERIOR: Perform the update to obtain the posterior distribution using Bayes Rule:

$$f(y|\mathbf{x}) \propto rac{f(\mathbf{x}|y)f(y)}{f(\mathbf{x})}$$

Example

We toss a coin 10 times and observe 3 heads. What is the probability p of a head.

PRIOR: Take an uninformative prior

$$f(p) = egin{cases} 1 & ext{if } p \in [0,1] \ 0 & ext{else} \end{cases}$$

② DATA: The given data is the number of heads from coin tosses.

$$f(x|p) = {10 \choose x} p^x (1-p)^{n-x}$$

We are given that x = 3 - obtain a likelihood for p

$$f(x|p) = \begin{pmatrix} 10 \\ 3 \end{pmatrix} p^3 (1-p)^7$$

OPOSTERIOR: Perform the update using Bayes Rule:

$$f(p|x) = \frac{f(x|p)f(p)}{f(x)}$$
$$= \frac{\binom{10}{3}p^3(1-p)^7 \cdot 1}{f(x)}$$
$$\propto p^3(1-p)^7$$
$$\therefore p|x \sim \text{Beta}(4,8)$$

イロト イポト イヨト イヨト

æ

Example Continued

Figure: Prior and Posterior Distribution of p

A trickier problem

• PRIOR: $\lambda \sim \text{Gamma}(\alpha, \beta)$

$$f(\lambda) = rac{eta^lpha \lambda^{lpha - 1} \exp(-eta \lambda)}{\Gamma(lpha)}$$

2 DATA: $X \sim \text{Poisson}(\lambda)$

$$f(x|\lambda) = \frac{\exp(-\lambda)\lambda^x}{x!}$$

OSTERIOR: Perform the update using Bayes Rule:

$$f(y|\mathbf{x}) \propto f(\mathbf{x}|y)f(y)$$

POSTERIOR:

 $f(\lambda|x) \propto f(x|\lambda)f(\lambda)$ $\propto \frac{\exp(-\lambda)\lambda^{x}}{x!} \frac{\beta^{\alpha}\lambda^{\alpha-1}\exp(-\beta\lambda)}{\Gamma(\alpha)}$ $\propto \exp(-\lambda)\lambda^{x}\lambda^{\alpha-1}\exp(-\beta\lambda)$ $\propto \lambda^{x+\alpha-1} \exp(-(\beta+1)\lambda)$ $\lambda | x \sim \text{Gamma}(x + \alpha, \beta + 1)$

(日)

3

See Demo

< □ > < 同 >

æ

The TrueSkill Model

• **PRIOR**: The players' initial/prior skill is modelled by a normal distribution

$$f(\mathsf{skill}) \sim \mathsf{N}(\mu, \sigma^2)$$
 $\sigma^2 = rac{\gamma^2}{e^{\mathsf{xperience}}} + rac{\tau^2(t'-t)}{e^{\mathsf{skill}}}$

DATA: The players' performance in a match is modelled by a normal distribution

$$f(\mathsf{perf}) \sim \mathsf{N}(\mathsf{skill}, \beta^2)$$

- β is a tunable parameter that depends on how random games are.
- **POSTERIOR**: Using Bayes rule:

$$f(skill'|perf) = \frac{f(perf|skill)f(skill)}{f(perf)}$$

The posterior distribution can be approximated by a normal distribution. The new skill rating μ' assigned to the player is the mean of this distribution.

Figure: Idealised skill rating update

18 / 25

• More complicated in reality:

$$f(skill'|perf, conditions) = \frac{f(perf|skill, conditions)f(skill)}{f(perf|conditions)}$$

- "conditions" refer to aspects of a match that cannot be modelled
- The problem is not solved analytically
- Calculation can be performed efficiently using an algorithm such as Expectation Propagation (EP)
- EP is an iterative method that can approximate probability distributions

The TrueSkill Model

Figure: Skill ratings of several players in Halo 5

There are a variety of parameters in the model that give it flexibility:

- μ_0, σ_0 : The mean skill and skill variation of a brand new player
- β^2 : Match randomness parameter
- γ : Skill increase due to experience
- τ^2 : Skill decay over time parameter

These would be learned from historical match data by choosing parameters that best predict match outcomes.

Game Mode	Number of Matches per Player
16 Players Free-For-All	3
8 Players Free-For-All	3
4 Players Free-For-All	5
2 Players Free-For-All	12
4 Teams/2 Players Per Team	10
4 Teams/4 Players Per Team	20
2 Teams/4 Players Per Team	46
2 Teams/8 Players Per Team	91

Table: Minimum matches per Player to obtain a confident skill rating

- On historical match data from Halo 5, TrueSkill is only 52% accurate
- TrueSkill2 is 68% accurate substantial improvement
- Additional factors that *TrueSkill2* considers:
 - $\bullet\,$ Performance includes individual statistics such as k/d ratio.
 - A quit is treated as a surrender
 - Skill is correlated with other gamemodes
 - Players in a squad are assumed to perform better
- TrueSkill2 is planned for implementation into League of Legends

23 / 25

- A system for modelling the skill of players in competitive games
- Some of the basic theory behind Bayesian inference
- How the Bayesian toolkit is suited to sequential data problems
- A novel application of statistics.

24 / 25

Ralf Herbrich, Tom Minka, and Thore Graepel. TrueSkill(TM): A Bayesian Skill Rating System. Advances in Neural Information Processing Systems 20, 2007.

- Sharon Lee. STAT3001 Lecture Notes. 2023.
- Tom Minka, Ryan Cleven, and Yordan Zaykov. TrueSkill 2: An improved Bayesian skill rating system. Microsoft Research, 2018.