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Why this presentation?

There’s been a big shift in mathematics towards analysing objects
using functions, maps or other “arrows” between them.

The modern formalism for these ideas is category theory.

Because it’s “abstract nonsense”, category theory is said to be:
• Hard to get the gist of
• Inaccessible without sophisticated mathematical background
• Not immediately applicable

Main goal

To informally highlight some of the

context behind basics of applications of

category theory, so that it isn’t as intimidating next time.
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Outline

1 Category Theory in Context
Arrows over Objects
Examples of Categories

2 Basic Category Theory
Monomorphisms, Epimorphisms and Isomorphisms
Duality
Functorality and Naturality
Universality
The Yoneda Lemma

3 Categories for the Working Mathematician
Haskell and Functional Programming
Monoidal Categories and Resource Handling
Enrichment and Abelian Categories

4 Terminal chapter
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How do graphs fit together?

Definition (Graph)

A graph G consists of:

a set V (G) of vertices, a set E(G) of edges

such that each edge has a specified start and end vertex.

Example

• •
• •

•
• •
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How do graphs fit together?

Remark. We care about the structure within a graph, not:
• how the vertices/edges are labelled
• how the vertices/edges are arranged in space

Example

• •
a

b
is interchangeable with • •

cat

dog

Gabriel Field The Universal Presence of Category Theory



How do graphs fit together?

Question

How do graphs “fit together” amongst each other?

Example

Each graph “forms part of” the graph(s) below it:

•
• •
• •

• • •
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How do graphs fit together?

Question

How do graphs “fit together” amongst each other?

Example

Each graph “collapses onto” the graph(s) below it:

• •
• •
•
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How do graphs fit together?

Question

How do graphs “fit together” amongst each other?

Example

The top graph “collapses onto part of” the graph below it:

• •
• • •

How are these relationships encoded?
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How do graphs fit together?

Definition (Graph homomorphism)

A graph homomorphism f : G→ H consists of:
• A function V (G)→ V (H) (called f)
• A function E(G)→ E(H) (also called f)

such that

G
f−−−−→ H

u

v

e
f7−−−−→

f(u)

f(v)

f(e)

A graph homomorphism G→ H tells us how G “collapses onto
part of” H.
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How do graphs fit together?

Example

G collapses onto part of H...

G = •1 •2a
b

c

H = •3 •4 •5
d

e

...witnessed by f : G→ H with

f (•1) = f (•2) = •3

f
(

a
)
= f

(
b

)
= f

(
c

)
= d
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How do graphs fit together?

When f : G ↣ H is injective, there is no “collapse”.
f is a way in which “H is seen from the perspective of G”.

Example

•
• •
• •

• • •
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How do graphs fit together?

When f : G ↠ H is surjective, then “H is a (perhaps degenerate)
version of G”.

Example

• •

• •

• •

• •

•
A 3-cycle, traversed twice, is a degenerate 6-cycle.
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How do graphs fit together?

Observation

Graph homomorphisms give us a powerful way to understand how
graphs mimic one another.

The same game can be played with:
• Groups and group homomorphisms (e.g. Z/4 ↠ Z/2)
• Topological spaces and continuous maps (e.g. paths are maps
out of [0, 1])
• Sets and functions (e.g. |X| ≤ |Y | iff X ↣ Y )

In all cases, maps are more important than objects.
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Categories

Definition (Category)

A category C consists of:
• A collection ob(C) of objects
• ∀a, b ∈ ob(C), a collection C(a, b) of arrows from a to b
• ∀a ∈ ob(C), an identity arrow 1a ∈ C(a, a)
• ∀a, b, c ∈ ob(C), a composition function

C(b, c)× C(a, b)
◦−−→ C(a, c)

(g, f) 7−→ g ◦ f

Such that for all a
f−→ b

g−→ c
h−→ d in C,

1b ◦ f = f ◦ 1a = f h ◦ (g ◦ f) = (h ◦ g) ◦ f

Remark. The definition of a category emphasises the arrows.
“Whenever you introduce new objects, you should specify the
arrows between them.”
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Categories

Example

Set has:
• objects are sets
• arrows X → Y are functions X → Y
• identity arrows idX are identity functions
• composition g ◦ f is function composition

“Structures and structure-preserving maps”:

Monoid Grp Ab

Vect Graph Top
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Categories

Example

A poset (P,≤) determines a category P where:
• objects are elements of P
• if x ≤ y, then there is a unique arrow x→ y in P

• identity arrows correspond to reflexivity (x ≤ x)
• composites correspond to transitivity (x ≤ y ≤ z =⇒ x ≤ z)

A group (G, ·) determines a category BG where:
• there is one object ∗
• BG(∗, ∗) = G
• the identity 1∗ is the identity element e ∈ G
• composition h ◦ g := h · g uses the group operation
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Categories

Category theory provides language and insight for compositionality.

Instantiating general category-theoretic ideas in any particular
category often yields interesting results.
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Monomorphisms and epimorphisms

Recall that an injective graph hom. captures substructure, whereas
a surjective graph hom. captures (degenerate) quotient structure.

Definition (Monomorphism, Epimorphism)

An arrow a
m−→ b is a monomorphism just when

∀

(
x a b

f

g

m

)
, m ◦ f = m ◦ g =⇒ f = g

Dually, an arrow a
e−→ b is an epimorphism just when

∀

(
a b xe

f

g

)
, f ◦ e = g ◦ e =⇒ f = g
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Monomorphisms and epimorphisms

Example

In Set, any subset yields an inclusion map:

A ⊆ X =⇒ A
ι−−→ X

a 7−→ a

This map is monic.

In Grp, any normal subgroup yields a quotient map:

N ⊴ G =⇒ G
π−−→ G/N

g 7−→ gN

This map is epic.
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Isomorphisms

Definition (Isomorphism)

An arrow a
i−→ b is an isomorphism just when ∃b i−1

−−→ a such that

a b

a

i

1a
i−1⟲ and

b

a b

i−1
1b

⟲

i

(i.e. i−1 ◦ i = 1a and i ◦ i−1 = 1b.)

Example

Set Bijection
Top Homeomorphism
Grp Isomorphism
Graph Isomorphism
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Duality

Definition (Opposite category)

Given a category C, its opposite category Cop consists of:
• Objects: same as C
• Arrows a→ b in Cop: arrows b→ a in C

• Identities: same as C
• Composition: g ◦op f := f ◦ g.

Example

C = ({0, 1, 2},≤) Cop = ({0, 1, 2},≥)
0 1

2

0 1

2

Gabriel Field The Universal Presence of Category Theory



Duality

“Interesting” structures in Cop are “interesting” in C, too.

Example

Let b
e−→ a be a monomorphism in Cop. That is,

∀

(
x b a

f

g

e

)
in Cop, e ◦op f = e ◦op g =⇒ f = g

Turning all the arrows around,

∀

(
a b xe

f

g

)
in C, f ◦ e = g ◦ e =⇒ f = g

So a monomorphism in Cop is an epimorphism in C.

Remark. An iso. in Cop is an iso. in C.
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Duality

Duality principle

In any statement that says “∀ categories C”, you can replace C

with Cop.

Example

Exercise: in any category C, any isomorphism is monic.

Therefore: in any category C, any isomorphism is epic.

dual dual
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Functorality

Functorality and naturality were the motive for the first paper in
category theory [1].

“Whenever you introduce new objects, you should specify the
arrows between them.”

Definition (Functor)

Let C,D be categories. A functor F : C→ D consists of:
• A function ob(C)→ ob(D) (called F )
• ∀c, c′ ∈ C, a function C(c, c′)→ D(F (c), F (c′)) (also F )

subject to:

F (1c) = 1F (c) F (g ◦ f) = F (g) ◦ F (f)
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Functorality

Example

Graph
V−−−−−→ Set

G

H

f 7−−−−−→
V (G)

V (H)

f

Observe:

1G
V7−→ 1V (G)

g ◦ f V7−→ g ◦ f

so retrieving vertex sets is functorial.
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Functorality

Definition (Commutative diagram)

A commutative diagram in C is a graph of objects and arrows,
e.g.

b

a c

gf

h

such that any two parallel paths have equal composites (e.g.
g ◦ f = h).

Lemma (Functors preserve commutative diagrams)

Take a commutative diagram in C, and apply a functor F : C→ D

to all objects and arrows in the diagram. Then, the resulting
diagram commutes in D.
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Functorality

Lemma (Functors preserve commutative diagrams)

Example

An isomorphism i : a ≃ b in C:
a b

a

i

1a
i−1 and

b

a b

i−1
1b

i

in C

Applying a functor F : C→ D, we get commutative diagrams

F (a) F (b)

F (a)

F (i)

1F (a)
F (i−1) and

F (b)

F (a) F (b)

F (i−1)
1F (b)

F (i)

in D

which says that F (i) is an isomorphism F (a) ≃ F (b) in D.
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Functorality

Any category C has an identity functor

1C : c
f−→ d 7−→ c

f−→ d

Functors A
F−→ B

G−→ C compose:(
a

f−→ a′
)

G◦F7−−−→
(
G(F (a))

G(F (f))−−−−−→ G(F (b))

)

Definition (Cat)

Cat is the category with
• objects: categories
• arrows: functors

and the above identities and composites.
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Naturality

“Whenever you introduce new objects, you should specify the
arrows between them.”

Definition (Natural transformation)

Let F ,G : C→ D be functors. A natural transformation
α : F ⇒ G consists of:
• A family αc : F (c)→ G(c) of arrows in D, for each c ∈ C

such that

∀a ∀b in C

F (a) F (b)

G(a) G(b) in D

∀f

F (f)

αa αb

G(f)

commutes.
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Naturality

Remark. Cat has:
• objects C,D, . . .
• arrows F,G, . . . : C→ D

• 2-cells α, . . . : F ⇒ G
which makes it a 2-category.
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Universality

∀thing, ∃!otherThing : condition

Example

Let V,W ∈ VectK and let β be a basis for V .

∀f : β
function−−−−−→W,

∃!T : V
linear−−−→W :

T |β = f

VectK (spanK(β),W ) ≃ Set(β,W )

natural in β,W ; adjunction.
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Universality

∀thing, ∃!otherThing : condition

Example

Let X,Y ∈ Set. The product projections X
πX←−− X × Y

πY−−→ Y
satisfy

∀A,∀f,∀g,∃!u :

A

X X × Y Y

f g
u

πX πY

commutes

(u : a 7→ (f(a), g(a)).) Limit.

Remark. The p-adic numbers are the colimit of Z/p ↪→ Z/p2 ↪→ · · ·
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Universality

∀thing, ∃!otherThing : condition

Example

There is a bijection

(n-colour vertex colourings)(G) ≃ Graph(G,Kn)

natural in G. Vertex colourings are representable, and form the
universal property of Kn.

All the universal properties come in this last form.

Gabriel Field The Universal Presence of Category Theory



Yoneda lemma

Scary version:

SetC (C(x,−), F ) ≃nat.F,x F (x)

Useful version:

Lemma (Yoneda)

C(a, x) ≃nat.x C(b, x)

=⇒ a ≃C b

Consequences:
• “Equational” proofs
• Easier handling of universal properties
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Functional programming

Functional programming is a paradigm where nothing can
change value.

Example

Imperative program:

x := 1; printf("%d", x);

x := 2; printf("%d", x);

// Wdym; 1 != 2?!

// This is clearly evil.

Functional program:

main = do

putStrLn "1"

putStrLn "2"

-- Much "better"
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Functional programming

Example

Loops aren’t functional:

for(int i = 0; i < 10; i++) {

printf("%d", i);

}

// Variable i changes value!

Recursion is functional:

printer 9 = putStrLn "9"

printer n = putStrLn (show n) >> printer (n + 1)

main = printer 0

Functional programming languages are very good for recursion.
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Functional programming

Imperative: Functional:

Data types Data types
Functions Functions
Variables More functions
Loops More functions

Error handling More functions
. . . . . .
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Functional programming

Imperative: Functional:

Data types Data types
Functions Functions
Variables More functions
Loops More functions

Error handling More functions
. . . . . .

Reasoning about imperative programs is hard.
Reasoning about functional programs is easier.
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Categorical influence

Haskell has an associated category Hask, with
• Objects: Data types A,B, . . .
• Arrows A→ B: Computable functions A→ B

Pretend Hask = Set if you want to.
For technical (cringe) reasons, this isn’t actually a category.
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Categorical influence: Algebraic data types

There are some built-in data types:
• Integer

• Char

• etc.
There’s a really cool way to build more.

Example

data IntegerAndChar = ThePair Integer Char

data IntegerOrChar = Left Integer | Right Char

data ListInteger = Empty | Both Integer ListInteger

Example

data Pair a b = ThePair a b

data Either a b = Left a | Right b

data [a] = [] | a : [a]
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Categorical influence: Algebraic data types

Example

data Pair a b = ThePair a b

data Either a b = Left a | Right b

data [a] = [] | a : [a]

Polymorphic data types are functors:

Pair : Hask×Hask −→ Hask

Either : Hask×Hask −→ Hask

[−] : Hask −→ Hask

Example

(+1) <$> [] = []

(+1) <$> 1:[] = 2:[]

(+1) <$> 1:2:[] = 2:3:[]
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Categorical influence: Algebraic data types

Example

data Pair a b = ThePair a b

data Either a b = Left a | Right b

data [a] = [] | a : [a]

Polymorphic data types have a universal property:

Example

∀x,∀⊕,∃!u :

{∗} [Integer] Integer× [Integer]

Integer Integer Integer× Integer

∗7→[]

∗7→x u

:

id×u

id ⊕

With x := 0 and ⊕ := +, we get u = sum.
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Categorical influence: Monads

Error handling in Haskell is sick.

Maybe

data Maybe a = Nothing | Just a

As a functor, Maybe : Hask→ Hask.
But really, Maybe fakes the behaviour

Hask −→ Hask∗

by sending A to (A ⊔ {Nothing}, Nothing).
The categorical way of “faking” this behaviour is a monad.
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Categorical influence: Monads

Example

main = do

putStrLn "gimme a number"

number <- (read @Integer) <$> getLine

putStrLn $ "you said " ++ show number

>> main

out> gimme a number

in> 69

out> you said 69
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Monoidal categories

Categories tell us about moving from one object to another.
Monoidal categories tell us about combining objects together.

Figure: Wiring diagram for preparing a lemon meringue pie

src: Fong and Spivak’s Seven Sketches [2]
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Enrichment

Monoidal categories serve as bases for enriched categories.

Definition (V-Category)

Fix a monoidal category V.
A V-category C consists of:
• A collection ob(C) of objects
• ∀a, b ∈ ob(C), a hom-object C(a, b) ∈ V

• (and identities and composition)
subject to some coherence conditions

Key point: Replace set of arrows C(a, b) with V-thing of arrows
C(a, b).
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Enrichment

Example

Bool = (false→ true) is a monoidal category.
A Bool-category is a preorder:

a ≤ b ⇐⇒ C(a, b) = true

Example

An Ab-category is an additive category: C(a, b) is an abelian
group, so arrows f, g : a→ b have a sum f + g : a→ b.

Example

A Cat-category is a 2-category; e.g. Cat.
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Abelian categories

Definition (Abelian category)

An abelian category is an Ab-category with the first
isomorphism theorem.

A B

coim(f) im(f)

f

≃

These have use in homological algebra, especially in cohomology
[3].
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Conclusions

Main goal

To informally highlight some of the

context behind basics of applications of

category theory, so that it isn’t as intimidating next time.

Context:
• Studying functions
• Regarding arrows as more important than objects
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Conclusions

Main goal

To informally highlight some of the

context behind basics of applications of

category theory, so that it isn’t as intimidating next time.

Basics:
• Monos, epis, isos
• Duality
• Functors and natural transformations
• Universality
• Yoneda lemma
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Conclusions

Main goal

To informally highlight some of the

context behind basics of applications of

category theory, so that it isn’t as intimidating next time.

Applications:
• Functional programming, esp. in the Haskell type system
• Monoidal categories and “combining objects”
• Enrichment and abelian categories, esp. in homology
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Terminal thanks

Thanks 4 watching.
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