Self-Similarity via Attractors

Gabriel Field

28/April/2023

Gabriel Field

Self-Similarity via Attractors

28/April/2023

イロト イボト イヨト イヨト

э

Outline

1 Goals

- 2 Motivation (Pretty Pictures)
- 3 Iterated Function Systems and Self-Similarity
- The Hausdorff Metric
- 5 Existence of Self-Similar Shapes

6 Aside: Fractals

∃ →

< 1 k

Outline

1 Goals

- 2 Motivation (Pretty Pictures)
- 3 Iterated Function Systems and Self-Similarity
- 4 The Hausdorff Metric
- 5 Existence of Self-Similar Shapes
- 6 Aside: Fractals

- ∢ ⊒ →

Goals

Main goal: You should leave this room convinced that *a self-similar set exists*.

Other goals:

Give you a taste of basic fractal geometry

Give you an excuse to look at pretty pictures

Give you some familiarity with the tools and setting used

Outline

1 Goals

2 Motivation (Pretty Pictures)

3 Iterated Function Systems and Self-Similarity

4 The Hausdorff Metric

5 Existence of Self-Similar Shapes

6 Aside: Fractals

< ∃⇒

▲ 同 ▶ → ● ▶

Motivation (Pretty Pictures)

We'll consider these ...

One Billion Pyramids - Sierpinski 3D Fractal Trip

Figure: Sierpinski Triangle

< 4 ₽ × <

→ ∃ →

Motivation (Pretty Pictures)

We won't consider these...

Figure: Algebraic Numbers

-			
$(\rightarrow $	briol	L 10	
VI.d.	uner		

Self-Similarity via Attractors

28/April/2023

Motivation (Pretty Pictures)

We won't consider these...

Figure: Mandelbrot Set

-		_	
(briel	E I A	
U a	וסווט		L L L

< □ > < □ > < □ > < □ > < □ > < □ >

Outline

1 Goals

- 2 Motivation (Pretty Pictures)
- 3 Iterated Function Systems and Self-Similarity
 - 4 The Hausdorff Metric
 - 5 Existence of Self-Similar Shapes
 - 6 Aside: Fractals

- 4 回 ト 4 ヨ ト 4 ヨ ト

Spaces and Shapes

We work in a metric space.

Definition

A metric space is a pair (X, d) where $d: X \times X \to \mathbb{R}_{\geq 0}$ satisfying that for all $x, y \in X$,

(this property): d(x, y) = 0 iff x = y(symmetry): d(x, y) = d(y, x)(triangle inequality): $d(x, y) \le d(x, z) + d(z, y)$

Examples

$$(\mathbb{R}^n, d)$$
 with $d: (x, y) \mapsto ||x - y||$
Most things

A shape is any subset of X.

We want to construct a self-similar shape. How do we do it?

Figure: Construction of Sierpinski triangle

-		_	
(briel	E I A	
U a	DHEI	116	ıu

< ∃⇒

< 1 k

We want to construct a self-similar shape. How do we do it?

Figure: Construction of Sierpinski triangle

'Cutting out' seems appropriate, but doesn't always work (see next slide)

Example where 'cutting out' fails:

Figure: Barnsley Fern

Cabriel Field	
Maurier Field	

Self-Similarity via Attractors

・ロト ・四ト ・ヨト ・ヨト

э

Example where 'cutting out' fails:

Figure: Barnsley Fern

Solution: use contraction maps to encode 'self-similar copies'.

12/46

< □ > < @ >

Definition

Given metric spaces (X, d_X) , (Y, d_Y) and $L \ge 0$, A map $\psi : X \to Y$ is called *Lipschitz with constant* L if for all $x, x' \in X$,

 $d_Y(\psi(x),\psi(x')) \le L \, d_X(x,x')$

・ 何 ト ・ ヨ ト ・ ヨ ト

Definition

Given metric spaces (X, d_X) , (Y, d_Y) and $L \ge 0$, A map $\psi : X \to Y$ is called *Lipschitz with constant* L if for all $x, x' \in X$,

 $d_Y(\psi(x),\psi(x')) \le L \, d_X(x,x')$

A map ψ is called *Lipschitz* if it is Lipschitz with constant L for some $L \ge 0$.

Definition

Given metric spaces (X, d_X) , (Y, d_Y) and $L \ge 0$, A map $\psi : X \to Y$ is called *Lipschitz with constant* L if for all $x, x' \in X$,

$$d_Y(\psi(x),\psi(x')) \le L \, d_X(x,x')$$

A map ψ is called *Lipschitz* if it is Lipschitz with constant L for some $L \ge 0$.

The Lipschitz constant of a Lipschitz map ψ is

 $\operatorname{Lip}(\psi) = \inf\{L \ge 0 \mid \psi \text{ is Lipschitz with constant } L\}$

・ 何 ト ・ ヨ ト ・ ヨ ト

Definition

Given metric spaces (X, d_X) , (Y, d_Y) and $L \ge 0$, A map $\psi : X \to Y$ is called *Lipschitz with constant* L if for all $x, x' \in X$,

$$d_Y(\psi(x),\psi(x')) \le L \, d_X(x,x')$$

A map ψ is called *Lipschitz* if it is Lipschitz with constant L for some $L \ge 0$.

The *Lipschitz constant* of a Lipschitz map ψ is

 $\operatorname{Lip}(\psi) = \inf\{L \ge 0 \mid \psi \text{ is Lipschitz with constant } L\}$

Remark

Any Lipschitz map ψ is Lipschitz with constant $Lip(\psi)$.

イロト イヨト イヨト ・

Contraction Maps

Definition

Given metric spaces $(X, d_X), (Y, d_Y)$, A map $\psi : X \to Y$ is called a *contraction* if it is Lipschitz with constant L for some $L \in [0, 1)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Contraction Maps

Definition

Given metric spaces $(X, d_X), (Y, d_Y)$, A map $\psi : X \to Y$ is called a *contraction* if it is Lipschitz with constant L for some $L \in [0, 1)$. Equivalently, ψ is a contraction if it is Lipschitz and $\operatorname{Lip}(\psi) < 1$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Contraction Maps

Definition

Given metric spaces $(X, d_X), (Y, d_Y)$, A map $\psi : X \to Y$ is called a *contraction* if it is Lipschitz with constant L for some $L \in [0, 1)$.

Equivalently, ψ is a contraction if it is Lipschitz and $\operatorname{Lip}(\psi) < 1$.

Examples

$$\psi: [-2.5, 2.5] \rightarrow \mathbb{R}, \ x \mapsto (x/3)^3$$
 has $\operatorname{Lip}(\psi) \approx 0.69444 \cdots$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Contraction Maps: More Examples

Examples

The maps

$$\psi_1 : \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \quad \psi_2 : \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \qquad \psi_3 : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
$$x \longmapsto \frac{1}{2}x \qquad x \longmapsto \frac{1}{2}x + \binom{1/2}{0} \qquad x \longmapsto \frac{1}{2}x + \binom{1/4}{\sqrt{3/2}}$$

are contractions with $\operatorname{Lip}(\psi_i) = 1/2$ (for each *i*). See these visualisations of the ψ_i .

イロト イヨト イヨト ・

Iterated Function Systems

Definition

Given a metric space (X, d), An *Iterated Function System* (IFS) on X is a finite collection $\Psi = \{\psi_1, \dots, \psi_n\}$ of contraction maps $\psi_i : X \to X$.

< □ > < □ > < □ > < □ > < □ > < □ >

Iterated Function Systems

Definition

Given a metric space (X, d), An *Iterated Function System* (IFS) on X is a finite collection $\Psi = \{\psi_1, \dots, \psi_n\}$ of contraction maps $\psi_i : X \to X$.

Definition

Given an IFS Ψ on a metric space (X, d), The *iteration map* is the function

$$\Psi^{1}: \mathcal{H}(X) \longrightarrow \mathcal{H}(X)$$
$$A \longmapsto \bigcup_{\psi \in \Psi} (\psi(A))$$

(We will define the object $\mathcal{H}(X) \subseteq \mathcal{P}(X)$ later.)

イロト イヨト イヨト ・

Iterated Function Systems

Definition

Given a metric space (X, d), An *Iterated Function System* (IFS) on X is a finite collection $\Psi = \{\psi_1, \dots, \psi_n\}$ of contraction maps $\psi_i : X \to X$.

Definition

Gabrie

```
Given an IFS \Psi on a metric space (X, d),
The iteration map is the function
```

$$\Psi^{1}: \mathcal{H}(X) \longrightarrow \mathcal{H}(X)$$
$$A \longmapsto \bigcup_{\psi \in \Psi} (\psi(A))$$

(We will define the object $\mathcal{H}(X) \subseteq \mathcal{P}(X)$ later.)

The idea: use contraction maps to encode the 'self-similar copies' in a self-similar shape.

Field	Self-Similarity via Attractors
-------	--------------------------------

IFS Example

Figure: Sierpinski Triangle \mathcal{S}

Origin at lower-left corner of S. Then, S is described by the IFS $\Psi = \{\psi_1, \psi_2, \psi_3\}.$

IFS Example

Figure: Sierpinski Triangle \mathcal{S}

Origin at lower-left corner of S. Then, S is described by the IFS $\Psi = \{\psi_1, \psi_2, \psi_3\}.$

$$\psi_1 : \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \quad \psi_2 : \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \qquad \psi_3 : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
$$x \longmapsto \frac{1}{2}x \qquad x \longmapsto \frac{1}{2}x + \binom{1/2}{0} \qquad x \longmapsto \frac{1}{2}x + \binom{1/4}{\sqrt{3}/2}$$

Self-Similarity

We can finally state what *self-similarity* is.

Definition

Given a metric space (X, d), A (non-empty, compact) subset $A \in \mathcal{H}(X)$ is called *self-similar* if there exists an IFS Ψ on X such that $A = \Psi^1(A)$.

So, a self-similar set is one which is fixed by the iteration map of some IFS.

Self-Similarity

We can finally state what *self-similarity* is.

Definition

Given a metric space (X, d), A (non-empty, compact) subset $A \in \mathcal{H}(X)$ is called *self-similar* if there exists an IFS Ψ on X such that $A = \Psi^1(A)$.

So, a self-similar set is one which is fixed by the iteration map of some IFS. It's not yet obvious that a self-similar set exists. We need more machinery to prove that.

Outline

1 Goals

- 2 Motivation (Pretty Pictures)
- 3 Iterated Function Systems and Self-Similarity

4 The Hausdorff Metric

5 Existence of Self-Similar Shapes

6 Aside: Fractals

- 4 回 ト - 4 三 ト

When we look at the behaviour of the iteration map Ψ^1 , it would be useful to track the 'distance between sets'.

э

< □ > < 同 > < 回 > < 回 > < 回 >

When we look at the behaviour of the iteration map Ψ^1 , it would be useful to track the 'distance between sets'.

First, we restrict to a particular class of sets which we can precisely measure the distance between.

Definition

Given a metric space (X, d), Set $\mathcal{H}(X) = \{A \subseteq X \mid A \text{ is non-empty and compact}\}.$

<日

<</p>

When we look at the behaviour of the iteration map Ψ^1 , it would be useful to track the 'distance between sets'.

First, we restrict to a particular class of sets which we can precisely measure the distance between.

Definition

Given a metric space (X, d), Set $\mathcal{H}(X) = \{A \subseteq X \mid A \text{ is non-empty and compact}\}.$

Assumptions:

Non-empty: We can reasonably determine distances between sets.

When we look at the behaviour of the iteration map Ψ^1 , it would be useful to track the 'distance between sets'.

First, we restrict to a particular class of sets which we can precisely measure the distance between.

Definition

Given a metric space (X, d), Set $\mathcal{H}(X) = \{A \subseteq X \mid A \text{ is non-empty and compact}\}.$

Assumptions:

Non-empty: We can reasonably determine distances between sets. Compact: Distances can be measured uniquely.

く 伺 ト く ヨ ト く ヨ ト

When we look at the behaviour of the iteration map Ψ^1 , it would be useful to track the 'distance between sets'.

First, we restrict to a particular class of sets which we can precisely measure the distance between.

Definition

Given a metric space (X, d), Set $\mathcal{H}(X) = \{A \subseteq X \mid A \text{ is non-empty and compact}\}.$

Assumptions:

Non-empty: We can reasonably determine distances between sets.

Compact: Distances can be measured uniquely.

Some authors use $\mathcal{H}(X)$ as the collection of subsets which are non-empty, closed and bounded. Conventions are equivalent in Euclidean spaces.

3

Point-to-set distance $d_{\rm p-S}$

First measure the distance from a point to a set...

Definition

Given a metric space (X, d), $a \in X$ and $B \in \mathcal{H}(X)$, The *point-to-set distance* from a to B is $d_{p-S}(a, B) = \inf_{b \in B} \{d(a, b)\}$.

Figure: Point-to-set distance $d_{p-S}(a, B)$.

-		_	
(briel	E I A	
U a	DHEI	116	ıu
Set-to-set distance $d_{\rm S-S}$

...then measure the distance from a set to a set...

Definition

Given a metric space (X, d) and $A, B \in \mathcal{H}(X)$, The set-to-set distance from A to B is $d_{S-S}(A, B) = \sup_{a \in A} \{d_{p-S}(a, B)\}.$

Set-to-set distance $d_{\rm S-S}$

...then measure the distance from a set to a set...

Definition

Given a metric space (X, d) and $A, B \in \mathcal{H}(X)$, The set-to-set distance from A to B is $d_{S-S}(A, B) = \sup_{a \in A} \{d_{p-S}(a, B)\}.$

Figure: Set-to-set distance $d_{S-S}(A, B)$

Gabriel Field

< <p>Image: A marked black

Is d_{S-S} a metric? Is d_{S-S} a metric? $d_{S-S}(A, B) \ge 0$: clear. $d_{S-S}(A, B) = 0$ iff. A = B might not be true... $d_{S-S}(A, B) = d_{S-S}(B, A)$ might not be true... $d_{S-S}(A, B) \le d_{S-S}(A, C) + d_{S-S}(C, B)$: takes work; is true.

э

< □ > < □ > < □ > < □ > < □ > < □ >

Is d_{S-S} a metric? Is d_{S-S} a metric? $d_{S-S}(A, B) \ge 0$: clear. $d_{S-S}(A, B) = 0$ iff. A = B might not be true... $d_{S-S}(A, B) = d_{S-S}(B, A)$ might not be true... $d_{S-S}(A, B) \le d_{S-S}(A, C) + d_{S-S}(C, B)$: takes work; is true.

Consider...

Figure: d_{S-S} is not a metric on $\mathcal{H}(X)$.

Gabriel Field

23 / 46

Pompeiu-Hausdorff metric $d_{\mathcal{H}(X)}$

We fix these problems by forcing our 'distance' to take the worst-case scenario.

Definition

Given a metric space (X, d), The *Pompeiu-Hausdorff metric* on $\mathcal{H}(X)$ is the function

$$d_{\mathcal{H}(X)} : \mathcal{H}(X) \times \mathcal{H}(X) \longrightarrow \mathbb{R}_{\geq 0}$$
$$(A, B) \longmapsto \max\{d_{S-S}(A, B), d_{S-S}(B, A)\}$$

 $d_{\mathcal{H}(X)}(A,B) < \varepsilon \text{ is equivalent to } d_{\mathrm{S-S}}(A,B) < \varepsilon \text{ and } d_{\mathrm{S-S}}(B,A) < \varepsilon.$

イロト イヨト イヨト ・

Pompeiu-Hausdorff metric $d_{\mathcal{H}(X)}$

We fix these problems by forcing our 'distance' to take the worst-case scenario.

Definition

Given a metric space (X, d), The *Pompeiu-Hausdorff metric* on $\mathcal{H}(X)$ is the function

$$d_{\mathcal{H}(X)}: \mathcal{H}(X) \times \mathcal{H}(X) \longrightarrow \mathbb{R}_{\geq 0}$$
$$(A, B) \longmapsto \max\{d_{S-S}(A, B), d_{S-S}(B, A)\}$$

 $d_{\mathcal{H}(X)}(A,B) < \varepsilon$ is equivalent to $d_{S-S}(A,B) < \varepsilon$ and $d_{S-S}(B,A) < \varepsilon$. **Remark.** The inf and sup seen so far are min and max when we restrict to the *compact* sets in $\mathcal{H}(X)$.

イロト イヨト イヨト ・

Proposition

Given a metric space (X, d), $(\mathcal{H}(X), d_{\mathcal{H}(X)})$ is a metric space.

Proof sketch.

Let $A, B, C \in \mathcal{H}(X)$.

3

Proposition

Given a metric space (X, d), $(\mathcal{H}(X), d_{\mathcal{H}(X)})$ is a metric space.

Proof sketch.

Let $A, B, C \in \mathcal{H}(X)$. $(d_{\mathcal{H}(X)}(A, B) \ge 0)$: Clearly obvious.

Proposition

Given a metric space (X, d), $(\mathcal{H}(X), d_{\mathcal{H}(X)})$ is a metric space.

Proof sketch.

Let $A, B, C \in \mathcal{H}(X)$. $(d_{\mathcal{H}(X)}(A, B) \ge 0)$: Clearly obvious. $(d_{\mathcal{H}(X)}(A, B) = 0 \implies A = B)$: Since $0 = d_{S-S}(A, B) = \sup_{a \in A} \{d_{p-S}(a, B)\}$, we have that for all $a \in A$, $0 = d_{p-S}(a, B) = \inf_{b \in B} \{d(a, b)\}$. Hence, a is a limit point of B; thus, $A \subseteq \overline{B}$. Symmetrically, $B \subseteq \overline{A}$.

(人間) トイヨト イヨト ニヨ

Proposition

Given a metric space (X, d), $(\mathcal{H}(X), d_{\mathcal{H}(X)})$ is a metric space.

Proof sketch.

Let $A, B, C \in \mathcal{H}(X)$. $(d_{\mathcal{H}(X)}(A, B) \ge 0)$: Clearly obvious. $(d_{\mathcal{H}(X)}(A, B) = 0 \implies A = B)$: Since $0 = d_{S-S}(A, B) = \sup_{a \in A} \{d_{p-S}(a, B)\}$, we have that for all $a \in A$, $0 = d_{p-S}(a, B) = \inf_{b \in B} \{d(a, b)\}$. Hence, a is a limit point of B; thus, $A \subseteq \overline{B}$. Symmetrically, $B \subseteq \overline{A}$. A, B are compact subsets of a metric space, so they are closed. Hence, $A = \overline{A} = \overline{B} = B$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition

Given a metric space (X, d), $(\mathcal{H}(X), d_{\mathcal{H}(X)})$ is a metric space.

Proof sketch.

Let $A, B, C \in \mathcal{H}(X)$. $(d_{\mathcal{H}(X)}(A, B) \ge 0)$: Clearly obvious. $(d_{\mathcal{H}(X)}(A, B) = 0 \implies A = B)$: Since $0 = d_{S-S}(A, B) = \sup_{a \in A} \{d_{P-S}(a, B)\}$, we have that for all $a \in A$, $0 = d_{P-S}(a, B) = \inf_{b \in B} \{d(a, b)\}$. Hence, a is a limit point of B; thus, $A \subseteq \overline{B}$. Symmetrically, $B \subseteq \overline{A}$. A, B are compact subsets of a metric space, so they are closed. Hence, $A = \overline{A} = \overline{B} = B$. $(d_{\mathcal{H}(X)}(A, B) = d_{\mathcal{H}(X)}(B, A))$: Obviously clear.

25 / 46

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Proof sketch. (cont.) $(d_{\mathcal{H}(X)}(A, B) \leq d_{\mathcal{H}(X)}(A, C) + d_{\mathcal{H}(X)}(C, B))$: For all $a \in A, b \in B, c \in C$, we have that $d(a, b) \leq d(a, c) + d(c, b)$. The triangle inequality for d_{S-S} is obtained by taking appropriate infima/suprema. This then gives the triangle inequality for $d_{\mathcal{H}(X)}$.

Proof sketch. (cont.) $(d_{\mathcal{H}(X)}(A, B) \leq d_{\mathcal{H}(X)}(A, C) + d_{\mathcal{H}(X)}(C, B))$: For all $a \in A, b \in B, c \in C$, we have that $d(a, b) \leq d(a, c) + d(c, b)$. The triangle inequality for d_{S-S} is obtained by taking appropriate infima/suprema. This then gives the triangle inequality for $d_{\mathcal{H}(X)}$.

Definition

Given a metric space (X, d), (X, d) is *complete* if for every Cauchy sequence $(x_n)_{n=1}^{\infty}$ in X, $(x_n)_{n=1}^{\infty}$ converges.

э

Definition

Given a metric space (X, d), (X, d) is *complete* if for every Cauchy sequence $(x_n)_{n=1}^{\infty}$ in X, $(x_n)_{n=1}^{\infty}$ converges.

Proposition

Given a metric space (X, d), If (X, d) is complete, then so is $(\mathcal{H}(X), d_{\mathcal{H}(X)})$.

Proof sketch.

Let $(A_n)_{n=1}^{\infty}$ be a Cauchy sequence in $\mathcal{H}(X)$. What could the limit be?

Definition

Given a metric space (X, d), (X, d) is *complete* if for every Cauchy sequence $(x_n)_{n=1}^{\infty}$ in X, $(x_n)_{n=1}^{\infty}$ converges.

Proposition

Given a metric space (X, d), If (X, d) is complete, then so is $(\mathcal{H}(X), d_{\mathcal{H}(X)})$.

Proof sketch.

Let $(A_n)_{n=1}^{\infty}$ be a Cauchy sequence in $\mathcal{H}(X)$. What could the limit be? Set $B = \{x \in X \mid x \text{ is a limit point of some } (a_n)_{n=1}^{\infty}$ with each $a_n \in A_n\}$ and $A = \overline{B}$.

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

Proof sketch. (cont.)

Reminder:

 $B = \{x \in X \mid x \text{ is a limit point of some } (a_n)_{n=1}^{\infty} \text{ with each } a_n \in A_n\}$ and $A = \overline{B}$.

(A is non-empty): Take $(N_k)_{k=1}^{\infty}$ a strictly increasing sequence of positive integers such that for all $m, n \geq N_k$, $d_{\mathcal{H}(X)}(A_m, A_n) < 2^{-k}$.

Proof sketch. (cont.)

Reminder:

 $B = \{x \in X \mid x \text{ is a limit point of some } (a_n)_{n=1}^{\infty} \text{ with each } a_n \in A_n\}$ and $A = \overline{B}$.

(A is non-empty): Take $(N_k)_{k=1}^{\infty}$ a strictly increasing sequence of positive integers such that for all $m, n \geq N_k$, $d_{\mathcal{H}(X)}(A_m, A_n) < 2^{-k}$.

Some work shows that we can take a sequence $(a_n)_{n=1}^{\infty}$ with each $a_n \in A_n$ and $d(a_{N_i}, a_{N_j})$ gets arbitrarily small when $i, j \ge k$ for large enough k.

Proof sketch. (cont.)

Reminder:

 $B = \{x \in X \mid x \text{ is a limit point of some } (a_n)_{n=1}^{\infty} \text{ with each } a_n \in A_n \}$ and $A = \bar{B}.$

(A is non-empty): Take $(N_k)_{k=1}^{\infty}$ a strictly increasing sequence of positive integers such that for all $m, n \geq N_k$, $d_{\mathcal{H}(X)}(A_m, A_n) < 2^{-k}$. Some work shows that we can take a sequence $(a_n)_{n=1}^{\infty}$ with each $a_n \in A_n$ and $d(a_{N_i}, a_{N_j})$ gets arbitrarily small when $i, j \geq k$ for large enough k. Hence, the subsequence $(a_{N_k})_{k=1}^{\infty}$ is Cauchy. As (X, d) is complete, $(a_{N_k})_{k=1}^{\infty}$ converges to some x. By definition, $x \in B$, so $x \in A$ and A is non-empty.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof sketch. (cont.)

Reminder:

 $B = \{x \in X \mid x \text{ is a limit point of some } (a_n)_{n=1}^{\infty} \text{ with each } a_n \in A_n\}$ and $A = \overline{B}$.

 $((A_n)_{n=1}^{\infty} \text{ converges to } A)$: Need to show that $\lim_{n\to\infty} d_{\mathcal{H}(X)}(A_n, A) = 0$. i.e. need to show $\lim_{n\to\infty} d_{S-S}(A_n, A) = \lim_{n\to\infty} d_{S-S}(A, A_n) = 0$.

Proof sketch. (cont.)

Reminder:

 $B = \{x \in X \mid x \text{ is a limit point of some } (a_n)_{n=1}^{\infty} \text{ with each } a_n \in A_n\}$ and $A = \overline{B}$.

 $((A_n)_{n=1}^{\infty} \text{ converges to } A)$: Need to show that $\lim_{n\to\infty} d_{\mathcal{H}(X)}(A_n, A) = 0$. i.e. need to show $\lim_{n\to\infty} d_{S-S}(A_n, A) = \lim_{n\to\infty} d_{S-S}(A, A_n) = 0$. $\lim_{n\to\infty} d_{S-S}(B, A_n) = \lim_{n\to\infty} d_{S-S}(A_n, B) = 0$ can be shown with a similar sequence argument to showing $A \neq \emptyset$. Hence, $\lim_{n\to\infty} d_{\mathcal{H}(X)}(A_n, B) = 0$. Since $d_{\mathcal{H}(X)}(A, B) = 0$ (won't prove this; holds for closures in general), we have that $\lim_{n\to\infty} d_{\mathcal{H}(X)}(A_n, A) = 0$.

Proof sketch. (cont.)

Reminder:

 $B = \{x \in X \mid x \text{ is a limit point of some } (a_n)_{n=1}^{\infty} \text{ with each } a_n \in A_n\}$ and $A = \overline{B}$.

(A is compact):

We leverage the fact that compact \iff complete and totally bounded in metric spaces.

イロト 不得 トイヨト イヨト

Proof sketch. (cont.)

Reminder:

 $B = \{x \in X \mid x \text{ is a limit point of some } (a_n)_{n=1}^{\infty} \text{ with each } a_n \in A_n \}$ and $A = \bar{B}.$

(A is compact):

We leverage the fact that compact \iff complete and totally bounded in metric spaces.

Claim. A is closed.

 $A = \overline{B}$ is a closure.

Proof sketch. (cont.)

Reminder:

 $B = \{x \in X \mid x \text{ is a limit point of some } (a_n)_{n=1}^{\infty} \text{ with each } a_n \in A_n \}$ and $A = \bar{B}.$

(A is compact):

We leverage the fact that compact \iff complete and totally bounded in metric spaces.

Claim. A is closed.

 $A = \overline{B}$ is a closure.

Claim. A is complete.

A is a closed subset of a complete metric space. Thus, A is complete.

Proof sketch. (cont.)

Reminder:

 $B = \{x \in X \mid x \text{ is a limit point of some } (a_n)_{n=1}^{\infty} \text{ with each } a_n \in A_n\}$ and $A = \overline{B}$.

Claim. A is totally bounded.

Fix $\varepsilon > 0$ and take $n \in \mathbb{Z}_{>0}$ large enough so that $d_{\mathcal{H}(X)}(A_n, A) < \varepsilon/2$. Since A_n is compact, it is totally bounded and hence there are finitely many a_1, \ldots, a_k such that $A_n \subseteq \bigcup_{i=1}^k (B_{\varepsilon/2}(a_i))$.

Proof sketch. (cont.)

Reminder:

 $B = \{x \in X \mid x \text{ is a limit point of some } (a_n)_{n=1}^{\infty} \text{ with each } a_n \in A_n\}$ and $A = \overline{B}$.

Claim. A is totally bounded.

Fix $\varepsilon > 0$ and take $n \in \mathbb{Z}_{>0}$ large enough so that $d_{\mathcal{H}(X)}(A_n, A) < \varepsilon/2$. Since A_n is compact, it is totally bounded and hence there are finitely many a_1, \ldots, a_k such that $A_n \subseteq \bigcup_{i=1}^k (B_{\varepsilon/2}(a_i))$. Take $x \in X$. Since $d_{\mathcal{H}(X)}(A, A_n) < \varepsilon/2$, there is $a \in A_n$ such that $d(x, a) < \varepsilon/2$. Also, for some $i, d(a, a_i) < \varepsilon/2$. Thus, $d(x, a_i) < \varepsilon$, so $x \in \bigcup_{i=1}^k (B_{\varepsilon}(a_i))$. Hence, A is totally bounded.

Proof sketch. (cont.)

Reminder:

 $B = \{x \in X \mid x \text{ is a limit point of some } (a_n)_{n=1}^{\infty} \text{ with each } a_n \in A_n\}$ and $A = \overline{B}$.

Claim. A is totally bounded.

Fix $\varepsilon > 0$ and take $n \in \mathbb{Z}_{>0}$ large enough so that $d_{\mathcal{H}(X)}(A_n, A) < \varepsilon/2$. Since A_n is compact, it is totally bounded and hence there are finitely many a_1, \ldots, a_k such that $A_n \subseteq \bigcup_{i=1}^k (B_{\varepsilon/2}(a_i))$. Take $x \in X$. Since $d_{\mathcal{H}(X)}(A, A_n) < \varepsilon/2$, there is $a \in A_n$ such that $d(x, a) < \varepsilon/2$. Also, for some $i, d(a, a_i) < \varepsilon/2$. Thus, $d(x, a_i) < \varepsilon$, so $x \in \bigcup_{i=1}^k (B_{\varepsilon}(a_i))$. Hence, A is totally bounded. **Claim.** A is compact.

 ${\cal A}$ is a complete and totally bounded subset of a metric space, so ${\cal A}$ is compact.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof sketch. (cont.)

Reminder:

 $B = \{x \in X \mid x \text{ is a limit point of some } (a_n)_{n=1}^{\infty} \text{ with each } a_n \in A_n\}$ and $A = \overline{B}$.

Claim. A is totally bounded.

Fix $\varepsilon > 0$ and take $n \in \mathbb{Z}_{>0}$ large enough so that $d_{\mathcal{H}(X)}(A_n, A) < \varepsilon/2$. Since A_n is compact, it is totally bounded and hence there are finitely many a_1, \ldots, a_k such that $A_n \subseteq \bigcup_{i=1}^k (B_{\varepsilon/2}(a_i))$. Take $x \in X$. Since $d_{\mathcal{H}(X)}(A, A_n) < \varepsilon/2$, there is $a \in A_n$ such that $d(x, a) < \varepsilon/2$. Also, for some $i, d(a, a_i) < \varepsilon/2$. Thus, $d(x, a_i) < \varepsilon$, so $x \in \bigcup_{i=1}^k (B_{\varepsilon}(a_i))$. Hence, A is totally bounded. **Claim.** A is compact.

 \boldsymbol{A} is a complete and totally bounded subset of a metric space, so \boldsymbol{A} is compact.

Thus, $A \in \mathcal{H}(X)$ and $(A_n)_{n=1}^{\infty}$ converges to A.

31 / 46

< 口 > < 同 > < 回 > < 回 > < 回 > <

Remark. An alternative version of this proof is an exercise in Munkres' *Topology* (Second Edition; Chapter 45, Page 280, Exercise 7). Munkres adapts a different, but equivalent definition of $d_{\mathcal{H}(X)}$. Showing the equivalence is also a good exercise.

Remark. An alternative version of this proof is an exercise in Munkres' *Topology* (Second Edition; Chapter 45, Page 280, Exercise 7). Munkres adapts a different, but equivalent definition of $d_{\mathcal{H}(X)}$. Showing the equivalence is also a good exercise.

We now have all the tools we need to show that a self-similar shape exists.

Outline

1 Goals

- 2 Motivation (Pretty Pictures)
- 3 Iterated Function Systems and Self-Similarity
- 4) The Hausdorff Metric
- 5 Existence of Self-Similar Shapes

Aside: Fractals

< ∃⇒

▲ 同 ▶ → 三 ▶

Definitions from a while ago

Recall Definitions

Given a metric space (X, d), An *IFS* $\Psi = \{\psi_1, \dots, \psi_k\}$ on X is a set of contraction maps $\psi_i : X \to X$. The *iteration map* is the function

$$\Psi^{1}: \mathcal{H}(X) \longrightarrow \mathcal{H}(X)$$
$$A \longmapsto \bigcup_{\psi \in \Psi} (\psi(A))$$

A subset $A \in \mathcal{H}(X)$ is called *self-similar* if there exists an IFS Ψ on X such that $A = \Psi^{1}(A)$.

We usually take (X, d) complete, so then $(\mathcal{H}(X), d_{\mathcal{H}}(X))$ is complete. We're interested in a *fixed point* of a map on a *complete metric space*. What gives us information about this?

Contraction Mapping Theorem

Theorem (Contraction Mapping)

Given (X, d) a metric space and $f : X \to X$, If f is a contraction and (X, d) is complete, then f has a unique fixed point (a point $x \in X$ such that f(x) = x).

Proof. MATH2401. Very pretty.

く 同 ト く ヨ ト く ヨ ト

Contraction Mapping Theorem

Theorem (Contraction Mapping)

Given (X, d) a metric space and $f : X \to X$, If f is a contraction and (X, d) is complete, then f has a unique fixed point (a point $x \in X$ such that f(x) = x).

Proof. MATH2401. Very pretty.

If we can show that the iteration map Ψ^1 is contractive, this will show that any IFS on a complete metric space has a unique associated self-similar set.

The iteration map is a contraction

Lemma

Given a metric space (X, d) and an IFS Ψ on X, The iteration map Ψ^1 indeed maps elements of $\mathcal{H}(X)$ to elements of $\mathcal{H}(X)$, and Ψ^1 is a contraction map on $(\mathcal{H}(X), d_{\mathcal{H}(X)})$.

Proof.

 $(\Psi^1 \text{ maps elements of } \mathcal{H}(X) \text{ to elements of } \mathcal{H}(X))$:

The iteration map is a contraction

Lemma

Given a metric space (X, d) and an IFS Ψ on X, The iteration map Ψ^1 indeed maps elements of $\mathcal{H}(X)$ to elements of $\mathcal{H}(X)$, and Ψ^1 is a contraction map on $(\mathcal{H}(X), d_{\mathcal{H}(X)})$.

Proof.

 $(\Psi^1 \text{ maps elements of } \mathcal{H}(X) \text{ to elements of } \mathcal{H}(X))$: Let $A \in \mathcal{H}(X)$. Then, for each $\psi \in \Psi$, since ψ is a contraction, it is continuous (easy to verify). Since A is compact, it follows that $\psi(A)$ is compact.

く 同 ト く ヨ ト く ヨ ト
The iteration map is a contraction

Lemma

Given a metric space (X, d) and an IFS Ψ on X, The iteration map Ψ^1 indeed maps elements of $\mathcal{H}(X)$ to elements of $\mathcal{H}(X)$, and Ψ^1 is a contraction map on $(\mathcal{H}(X), d_{\mathcal{H}(X)})$.

Proof.

 $(\Psi^1 \text{ maps elements of } \mathcal{H}(X) \text{ to elements of } \mathcal{H}(X))$:

Let $A \in \mathcal{H}(X)$. Then, for each $\psi \in \Psi$, since ψ is a contraction, it is continuous (easy to verify). Since A is compact, it follows that $\psi(A)$ is compact.

Because $\Psi^1(A) = \bigcup_{\psi \in \Psi} (\psi(A))$ is a finite union of compact sets, $\Psi^1(A)$ is compact. Thus, $\Psi^1(A) \in \mathcal{H}(X)$.

- 本間 ト イヨ ト イヨ ト 三 ヨ

The iteration map is a contraction

Proof. (cont.) $(\Psi^1 \text{ is a contraction}):$ Let $A, B \in \mathcal{H}(X)$. Then,

$$d_{S-S}(\Psi^{1}(A), \Psi^{1}(B)) = \sup_{x \in \Psi^{1}(A)} \left\{ \inf_{y \in \Psi^{1}(B)} \{d(x, y)\} \right\}$$
$$= \sup_{x \in \bigcup_{\psi \in \Psi} (\psi(A))} \left\{ \inf_{y \in \bigcup_{\psi' \in \Psi} (\psi'(B))} \{d(x, y)\} \right\}$$
$$= \max_{\psi \in \Psi} \left\{ \sup_{x \in \psi(A)} \left\{ \min_{\psi' \in \Psi} \left\{ \inf_{y \in \psi'(B)} \{d(x, y)\} \right\} \right\} \right\}$$
$$d_{S-S}(\Psi^{1}(A), \Psi^{1}(B)) = \max_{\psi \in \Psi} \left\{ \sup_{a \in A} \left\{ \min_{\psi' \in \Psi} \left\{ \inf_{b \in B} \{d(\psi(a), \psi'(b))\} \right\} \right\} \right\}$$

э

< ∃⇒

The iteration map is a contraction **Proof.** (cont.)

$$\begin{split} d_{\mathrm{S-S}}(\Psi^{1}(A),\Psi^{1}(B)) &= \max_{\psi\in\Psi} \left\{ \sup_{a\in A} \left\{ \min_{\psi'\in\Psi} \left\{ \inf_{b\in B} \left\{ d(\psi(a),\psi'(b)) \right\} \right\} \right\} \right\} \\ &\leq \max_{\psi\in\Psi} \left\{ \sup_{a\in A} \left\{ \inf_{b\in B} \left\{ d(\psi(a),\psi(b)) \right\} \right\} \right\} \\ &\leq \max_{\psi\in\Psi} \left\{ \sup_{a\in A} \left\{ \inf_{b\in B} \left\{ \operatorname{Lip}(\psi) \, d(a,b) \right\} \right\} \right\} \\ &= \max_{\psi\in\Psi} \left\{ \operatorname{Lip}(\psi) \right\} \sup_{a\in A} \left\{ \inf_{b\in B} \left\{ d(a,b) \right\} \right\} \\ &= \max_{\psi\in\Psi} \left\{ \operatorname{Lip}(\psi) \right\} d_{\mathrm{S-S}}(A,B) \\ &\leftarrow d_{\mathrm{S-S}}(\Psi^{1}(A),\Psi^{1}(B)) \leq \max_{\psi\in\Psi} \left\{ \operatorname{Lip}(\psi) \right\} d_{\mathcal{H}(X)}(A,B) \end{split}$$

Since each $\psi \in \Psi$ is a contraction and there are finitely many $\psi \in \Psi$, we have that $\max_{\psi \in \Psi} {Lip(\psi)} < 1$. Therefore, Ψ^1 is contractive.

The point of this talk

So finally ...

Corollary

Given a complete metric space (X, d), Each IFS Ψ on X admits a unique self-similar set. Having already seen an IFS in \mathbb{R}^2 , this guarantees that a self-similar set exists.

Proof.

The point of this talk

So finally ...

Corollary

Given a complete metric space (X, d), Each IFS Ψ on X admits a unique self-similar set. Having already seen an IFS in \mathbb{R}^2 , this guarantees that a self-similar set exists.

Proof.

 Ψ^1 is a contraction.

The point of this talk

So finally ...

Corollary

Given a complete metric space (X, d), Each IFS Ψ on X admits a unique self-similar set. Having already seen an IFS in \mathbb{R}^2 , this guarantees that a self-similar set exists.

Proof.

 Ψ^1 is a contraction.

Remark. The unique self-similar set Ψ admits is known as the *attractor* of Ψ (hence the name of this talk).

The point of this talk: Example

Examples

The self-similar set I passed around the room (affectionately, my 'Sierpinski pyramid') has the IFS $\Psi = \{\psi_1, \ldots, \psi_6\}$ for $\psi_i : \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$\psi_1 : x \longmapsto \frac{1}{2}x \qquad \qquad \psi_2 : x \longmapsto \frac{1}{2}x + \begin{pmatrix} 1/2 \\ 0 \\ 0 \end{pmatrix}$$
$$\psi_3 : x \longmapsto \frac{1}{2}x + \begin{pmatrix} 0 \\ 1/2 \\ 0 \end{pmatrix} \qquad \qquad \psi_4 : x \longmapsto \frac{1}{2}x + \begin{pmatrix} 1/2 \\ 1/2 \\ 0 \end{pmatrix}$$
$$\psi_5 : x \longmapsto \frac{1}{2}x + \begin{pmatrix} 1/4 \\ 1/4 \\ \sqrt{7/2} \end{pmatrix} \qquad \qquad \psi_6 : x \longmapsto -\frac{1}{2}x + \begin{pmatrix} 1/4 \\ 1/4 \\ \sqrt{7/2} \end{pmatrix}$$

Remark. That's my favourite fractal. Speaking of fractals...

		_	
(hriel	- HIG	ld.
00	DITCI	110	14

Outline

1 Goals

- 2 Motivation (Pretty Pictures)
- 3 Iterated Function Systems and Self-Similarity
- 4 The Hausdorff Metric
- 5 Existence of Self-Similar Shapes
- 6 Aside: Fractals

・ 何 ト ・ ヨ ト ・ ヨ ト

Fractals

Definition

Given an appropriate space X,

A subset A of X is called a *fractal* if it has non-integer dimension. Or other definitions, depending who you ask (Mandelbrot: Hausdo

...Or other definitions, depending who you ask (Mandelbrot: Hausdorff dimension > topological dimension).

The name comes from Latin *Fractus*, roughly meaning 'broken' The notion of dimension must be appropriately taken in context. So must the requirements of the space X ($X = \mathbb{R}^n$ is common).

Self-similarity dimension of the Sierpinski Triangle

Examples

Consider the Sierpinski Triangle S. Scaling S by 1/2 (towards the bottom-left corner) reduces the 'size'* of S by 1/3, so the dimension d satisfies $(1/2)^d = 1/3$. Hence, S has self-similarity dimension $d = \log_2(3)$.

Figure: Sierpinski Triangle \mathcal{S}

*Measure-theoretic details swept *way* under the rug. Relevant concepts: Hausdorff measure \mathcal{H}^d , Hausdorff dimension dim_{\mathcal{H}}.

Gabriel Field

Self-Similarity via Attractors

28/April/2023

43 / 46

Question: Are all self-similar shapes fractals?

∃ →

Image: A matched black

Question: Are all self-similar shapes fractals? **No.** Here's the IFS of a square: $\Psi = \{\psi_1, \dots, \psi_4\}$ with $\psi_i : \mathbb{R}^2 \to \mathbb{R}^2$ given by

Question: Are all self-similar shapes fractals? **No.** Here's the IFS of a square: $\Psi = \{\psi_1, \ldots, \psi_4\}$ with $\psi_i : \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$\psi_1 : x \longmapsto \frac{1}{2}x \qquad \qquad \psi_2 : x \longmapsto \frac{1}{2}x + \begin{pmatrix} 1/2 \\ 0 \end{pmatrix}$$
$$\psi_3 : x \longmapsto \frac{1}{2}x + \begin{pmatrix} 0 \\ 1/2 \end{pmatrix} \qquad \qquad \psi_4 : x \longmapsto \frac{1}{2}x + \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$$

Question: Are all fractals self-similar?

Question: Are all self-similar shapes fractals? **No.** Here's the IFS of a square: $\Psi = \{\psi_1, \ldots, \psi_4\}$ with $\psi_i : \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$\psi_1 : x \longmapsto \frac{1}{2}x \qquad \qquad \psi_2 : x \longmapsto \frac{1}{2}x + \begin{pmatrix} 1/2 \\ 0 \end{pmatrix}$$
$$\psi_3 : x \longmapsto \frac{1}{2}x + \begin{pmatrix} 0 \\ 1/2 \end{pmatrix} \qquad \qquad \psi_4 : x \longmapsto \frac{1}{2}x + \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$$

Question: Are all fractals self-similar?

No. The west coast of Great Britain is a fractal with dimension ≈ 1.25 (src: Wikipedia: Coastline paradox), but Great Britain doesn't contain another Great Britain.

Connection between fractals and self-similarity "Fractals are typically not self-similar" (Grant Sanderson; 3B1B).

Figure: Self-Similarity compared to Fractals

Roots of Littlewood Polynomials (beauty.pdf) Chaotic Sensing (ChaoS) fractal

Gabriel Field

Self-Similarity via Attractors

Thanks for listening!

I hope you have a better understanding and appreciation of self-similarity. Any feedback on my talk would be very helpful.

< ∃⇒

< 47 ▶