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Goals

Main goal: You should leave this room convinced that a self-similar set
exists.
Other goals:

Give you a taste of basic fractal geometry
Give you an excuse to look at pretty pictures

Give you some familiarity with the tools and setting used
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Motivation (Pretty Pictures)

We'll consider these...

One Billion Pyramids - Sierpinski 3D Fractal Trip

Figure: Sierpinski Triangle

Gabriel Field



https://www.youtube.com/watch?v=Nr0FGZYw6Ys

Motivation (Pretty Pictures)
We won't consider these...

Figure: Algebraic Numbers
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Motivation (Pretty Pictures)
We won't consider these...

Figure: Mandelbrot Set
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Spaces and Shapes

We work in a metric space.
Definition
A metric space is a pair (X, d) where d : X x X — R satisfying that for
all z,y € X,
(this property): d(z,y) =0iff x =y
(symmetry): d(z,y) = d(y, )
(triangle inequality): d(x,y) < d(x, z) + d(z,y)

Examples

(R", d) with d : (z,y) > = — y]
Most things

A shape is any subset of X.

Gabriel Field 28/April /2023 10/ 46



Towards |IFSes

We want to construct a self-similar shape.
How do we do it?

AL LS

Figure: Construction of Sierpinski triangle
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Towards |IFSes

We want to construct a self-similar shape.
How do we do it?

AL LS

Figure: Construction of Sierpinski triangle

‘Cutting out’ seems appropriate, but doesn't always work (see next slide)
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Towards IFSes

Example where ‘cutting out’ fails:

Figure: Barnsley Fern
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Towards IFSes

Example where ‘cutting out’ fails:

Figure: Barnsley Fern

Solution: use contraction maps to encode ‘self-similar copies’.
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Lipschitz Maps

Definition

Given metric spaces (X, dx), (Y,dy) and L > 0,
A map ¢ : X — Y is called Lipschitz with constant L if for all z,2’ € X,

dy ((x),9(z)) < Ldx (z,2)
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Lipschitz Maps

Definition
Given metric spaces (X, dx), (Y,dy) and L > 0,
A map ¢ : X — Y is called Lipschitz with constant L if for all z,2’ € X,

dy ((x),9(z)) < Ldx (z,2)

A map ) is called Lipschitz if it is Lipschitz with constant L for some
L>0.
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Lipschitz Maps

Definition
Given metric spaces (X, dx), (Y,dy) and L > 0,
A map ¢ : X — Y is called Lipschitz with constant L if for all z,2’ € X,

dy ((x),9(z)) < Ldx (z,2)

A map ) is called Lipschitz if it is Lipschitz with constant L for some
L>0.

The Lipschitz constant of a Lipschitz map ) is

Lip(¢) = inf{L > 0| ¢ is Lipschitz with constant L}
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Lipschitz Maps

Definition
Given metric spaces (X, dx), (Y,dy) and L > 0,
A map ¢ : X — Y is called Lipschitz with constant L if for all z,2’ € X,

dy ((x),9(z)) < Ldx (z,2)

A map ) is called Lipschitz if it is Lipschitz with constant L for some
L>0.
The Lipschitz constant of a Lipschitz map ) is

Lip(¢) = inf{L > 0| ¢ is Lipschitz with constant L}

Remark

Any Lipschitz map 1) is Lipschitz with constant Lip(v)).
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Contraction Maps

Definition
Given metric spaces (X, dx), (Y, dy),
A map ¢ : X = Y is called a contraction if it is Lipschitz with constant L

for some L € [0, 1).
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Contraction Maps

Definition
Given metric spaces (X, dx), (Y, dy),
A map ¢ : X = Y is called a contraction if it is Lipschitz with constant L

for some L € [0, 1).
Equivalently, v is a contraction if it is Lipschitz and Lip(¢)) < 1.
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Contraction Maps

Definition

Given metric spaces (X, dx), (Y, dy),

A map ¢ : X = Y is called a contraction if it is Lipschitz with constant L
for some L € [0, 1).

Equivalently, v is a contraction if it is Lipschitz and Lip(¢)) < 1.

Examples
Y :[-2.5,25] - R, x> (x/3)3 has Lip(y)) ~ 0.69444 - - -

S n Y
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Contraction Maps: More Examples

Examples
The maps
Y1 :R2 — R? ¢y : R? — R? 3 : R? — R?
:Cr—}lx a:»—)laj—l— 1/2 x»—>1x+ 1/4
2 2 0 2 V3/2

are contractions with Lip(¢;) = 1/2 (for each 7).
See these visualisations of the 1);.

T T


https://www.math3d.org/o5sLLwLGl

lterated Function Systems
Definition
Given a metric space (X, d),

An lterated Function System (IFS) on X is a finite collection
U = {41,...,1,} of contraction maps ¢; : X — X.

Gabriel Field
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lterated Function Systems
Definition
Given a metric space (X, d),

An lterated Function System (IFS) on X is a finite collection
U = {41,...,1,} of contraction maps ¢; : X — X.

Definition
Given an IFS U on a metric space (X, d),
The iteration map is the function

Ul H(X) — H(X)
A— | (®(4))

pevw

(We will define the object H(X) C P(X) later.)
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lterated Function Systems
Definition
Given a metric space (X, d),

An lterated Function System (IFS) on X is a finite collection
U = {41,...,1,} of contraction maps ¢; : X — X.

Definition
Given an IFS U on a metric space (X, d),
The iteration map is the function

Tl H(X) — H(X)
A— | @(4)

pevw

(We will define the object H(X) C P(X) later.)

The idea: use contraction maps to encode the ‘self-similar copies’ in a
self-similar shape.

Gabriel Field 28/April /2023
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IFS Example

Figure: Sierpinski Triangle S

Origin at lower-left corner of S. Then, S is described by the IFS
U= {1/11’ a, ¢3}
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IFS Example

Figure: Sierpinski Triangle S

Origin at lower-left corner of S. Then, S is described by the IFS
U = {t1, 92,93}

Y1 : R2— R? gy :R? — R? 3 : R2 — R?
gcn—)lx x»—)la:—l— 1/2 :1:»—)113—{— 1/4
2 2 0 2 V3/2
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Self-Similarity

We can finally state what self-similarity is.
Definition
Given a metric space (X, d),

A (non-empty, compact) subset A € H(X) is called self-similar if there
exists an IFS W on X such that A = U!(A4).

So, a self-similar set is one which is fixed by the iteration map of some IFS.
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Self-Similarity

We can finally state what self-similarity is.
Definition
Given a metric space (X, d),

A (non-empty, compact) subset A € H(X) is called self-similar if there
exists an IFS W on X such that A = U!(A4).

So, a self-similar set is one which is fixed by the iteration map of some IFS.

It’s not yet obvious that a self-similar set exists. WWe need more machinery
to prove that.
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@ The Hausdorff Metric
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H(X)

When we look at the behaviour of the iteration map W', it would be useful
to track the ‘distance between sets’'.
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H(X)

When we look at the behaviour of the iteration map W', it would be useful
to track the ‘distance between sets’.

First, we restrict to a particular class of sets which we can precisely
measure the distance between.

Definition
Given a metric space (X, d),
Set H(X)={A C X | A is non-empty and compact}.
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H(X)

When we look at the behaviour of the iteration map Ul it would be useful
to track the ‘distance between sets’.

First, we restrict to a particular class of sets which we can precisely
measure the distance between.

Definition
Given a metric space (X, d),
Set H(X)={A C X | A is non-empty and compact}.

Assumptions:

Non-empty: We can reasonably determine distances between sets.
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H(X)

When we look at the behaviour of the iteration map Ul it would be useful
to track the ‘distance between sets’.

First, we restrict to a particular class of sets which we can precisely
measure the distance between.

Definition
Given a metric space (X, d),
Set H(X)={A C X | A is non-empty and compact}.

Assumptions:
Non-empty: We can reasonably determine distances between sets.

Compact: Distances can be measured uniquely.

Gabriel Field 28/April /2023 20 /46



H(X)

When we look at the behaviour of the iteration map Ul it would be useful
to track the ‘distance between sets’.

First, we restrict to a particular class of sets which we can precisely
measure the distance between.

Definition
Given a metric space (X, d),
Set H(X)={A C X | Ais non-empty and compact}.

Assumptions:
Non-empty: We can reasonably determine distances between sets.
Compact: Distances can be measured uniquely.

Some authors use H(X) as the collection of subsets which are non-empty,
closed and bounded. Conventions are equivalent in Euclidean spaces.
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Point-to-set distance d,_s
First measure the distance from a point to a set...
Definition

Given a metric space (X,d), a € X and B € H(X),
The point-to-set distance from a to B is dy,_s(a, B) = infyecp{d(a,b)}.

(4]

7

Jf% /4/3/

Figure: Point-to-set distance d,_g(a, B).

Gabriel Field

28 /April /2023 21/46



Set-to-set distance dg_g

...then measure the distance from a set to a set...
Definition

Given a metric space (X,d) and A, B € H(X),
The set-to-set distance from A to B is

dS—S(A7 B) = SupaeA{dP—S (a7 B)}
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Set-to-set distance dg_g

...then measure the distance from a set to a set...
Definition

Given a metric space (X,d) and A, B € H(X),
The set-to-set distance from A to B is

dS—S(A7 B) = SupaeA{dP—S(a7 B)}

bod)

b5 (43)

Figure: Set-to-set distance dg_gs(A, B)
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Is dg_g a metric?
Is dg_g a metric?
ds_s(A, B) > 0: clear.

ds_s(A, B) =0 iff. A= B might not be true...
ds—s(A, B) = ds—s(B, A) might not be true...
ds—s(A,B) < dg_g(A,C) + ds_s(C, B): takes work; is true.
28 /April /2023 23 /46



Is dg_g a metric?
Is dg_g a metric?
ds_s(A, B) > 0: clear.
ds_s(A, B) =0 iff. A= B might not be true...
ds_s(A, B) = ds_s(B, A) might not be true...
—s(4, B)

)

Consider...

2z 5o

%{ //’ /3) >0

(3.4) =0

di

Figure: dg_g is not a metric on H(X).

Gabriel Field 28/April /2023

< dg-s(A,C) +ds_g(C, B): takes work; is true.
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Pompeiu-Hausdorff metric dy(x)

We fix these problems by forcing our ‘distance’ to take the worst-case
scenario.

Definition
Given a metric space (X, d),
The Pompeiu-Hausdorff metric on H(X) is the function
d’H(X) 5 H(X) X H(X) — Rzo
(4, B) — max{ds_s(4, B), ds-s(B, A)}

dy(x)(A, B) < ¢ is equivalent to ds_s(A, B) < ¢ and ds_s(B, 4) < e.
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Pompeiu-Hausdorff metric dy(x)

We fix these problems by forcing our ‘distance’ to take the worst-case
scenario.

Definition
Given a metric space (X, d),
The Pompeiu-Hausdorff metric on H(X) is the function
d’H(X) 5 H(X) X H(X) — RZO
(A, B) — max{ds_s(A, B), ds_s(B, A)}

dy(x)(A, B) < ¢ is equivalent to ds_s(A, B) < ¢ and ds_s(B, 4) < e.
Remark. The inf and sup seen so far are min and max when we restrict
to the compact sets in H(X).
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(H(X), dyx)) is a metric space

Proposition

Given a metric space (X, d),
(H(X),dy(x)) is a metric space.

Proof sketch.
Let A, B,C € H(X).
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(H(X), dyx)) is a metric space

Proposition

Given a metric space (X, d),
(H(X),dy(x)) is a metric space.

Proof sketch.
Let A,B,C € H(X).
(dy(x)(A, B) > 0): Clearly obvious.
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(H(X),dy(x)) is a metric space

Proposition

Given a metric space (X, d),
(H(X),dy(x)) is a metric space.

Proof sketch.

Let A, B,C € H(X).

(dy(x)(A, B) > 0): Clearly obvious.

(d’H(X)(Aa B) =0 = A= B)

Since 0 = dg_g(A, B) = sup,c4{dp—s(a, B)}, we have that for all a € A,
0 =dy—s(a, B) = infycp{d(a,b)}. Hence, a is a limit point of B; thus,
A C B. Symmetrically, B C A.
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(H(X),dy(x)) is a metric space

Proposition

Given a metric space (X, d),
(H(X),dy(x)) is a metric space.

Proof sketch.

Let A, B,C € H(X).

(dyy(x)(A, B) > 0): Clearly obvious.

(d’H(X)(Aa B) =0 = A= B)

Since 0 = dg_g(A, B) = sup,ca{dp—s(a, B)}, we have that for all a € A,
0 =dy—s(a, B) = infycp{d(a,b)}. Hence, a is a limit point of B; thus,
A C B. Symmetrically, B C A.

A, B are compact subsets of a metric space, so they are closed. Hence,
A=A=B=B8B.
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(H(X),dy(x)) is a metric space

Proposition

Given a metric space (X, d),
(H(X),dy(x)) is a metric space.

Proof sketch.

Let A, B,C € H(X).

(dyy(x)(A, B) > 0): Clearly obvious.

(dH(X)(A,B) =0 = A= B)

Since 0 = dg_g(A, B) = sup,ca{dp—s(a, B)}, we have that for all a € A,
0 =dy—s(a, B) = infycp{d(a,b)}. Hence, a is a limit point of B; thus,
A C B. Symmetrically, B C A.

A, B are compact subsets of a metric space, so they are closed. Hence,
A=A=B=B8B.

(d'H(X) (A, B) = d'H(X) (B, A)) ObViOUSly clear.
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(H(X),dy(x)) is a metric space

Proof sketch. (cont.)

(d3y(x)(A, B) < dy(x) (A, C) + dyyx)(C, B) ):

Foralla € A,b € B,c € C, we have that d(a,b) < d(a,c) + d(c,b). The
triangle inequality for dg_g is obtained by taking appropriate
infima/suprema. This then gives the triangle inequality for dy(x).
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(H(X),dy(x)) is a metric space

Proof sketch. (cont.)

(d3y(x)(A, B) < dy(x) (A, C) + dyyx)(C, B) ):

Foralla € A,b € B,c € C, we have that d(a,b) < d(a,c) + d(c,b). The
triangle inequality for dg_g is obtained by taking appropriate
infima/suprema. This then gives the triangle inequality for dy(x). "
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Completeness of (H(X), dy(x))

Definition

Given a metric space (X, d),

(X, d) is complete if for every Cauchy sequence ()5 in X, (z,)02,
converges.
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Completeness of (H(X), dyx))

Definition

Given a metric space (X, d),

(X, d) is complete if for every Cauchy sequence ()5 in X, (z,)02,
converges.

Proposition

Given a metric space (X, d),
If (X, d) is complete, then so is (H(X), dy(x))-

Proof sketch.
Let (A,,)52; be a Cauchy sequence in H(X). What could the limit be?
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Completeness of (H(X), dyx))

Definition

Given a metric space (X, d),

(X, d) is complete if for every Cauchy sequence ()5 in X, (z,)02,
converges.

Proposition

Given a metric space (X, d),
If (X, d) is complete, then so is (H(X), dy(x))-

Proof sketch.

Let (A,,)52; be a Cauchy sequence in H(X). What could the limit be?
Set B={z € X |z is a limit point of some (ay)32 with each a,, € A,}
and A = B.
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Completeness of (H(X), dyx))

Proof sketch. (cont.)
Reminder:

B = {x € X | x is a limit point of some (a,)5>; with each a,, € Ay} and
A=B.

(A is non-empty): Take (Ny)72, a strictly increasing sequence of positive
integers such that for all m,n > Ny, dy(x)(Am, An) <275
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Completeness of (H(X), dyx))

Proof sketch. (cont.)

Reminder:

B ={z € X | zis a limit point of some (a,)>2, with each a,, € A,} and
A=DB.

(A is non-empty): Take (Ny)72, a strictly increasing sequence of positive
integers such that for all m,n > Ny, dy(x)(Am, An) <275

Some work shows that we can take a sequence (a,)5° ; with each a,, € A,
and d(an;, an;) gets arbitrarily small when 4,j > k for large enough k.
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Completeness of (H(X), dyx))

Proof sketch. (cont.)

Reminder:

B ={z € X | zis a limit point of some (a,)>2, with each a,, € A,} and
A=DB.

(A is non-empty): Take (Ny)72, a strictly increasing sequence of positive
integers such that for all m,n > Ny, dy(x)(Am, An) <275

Some work shows that we can take a sequence (a,)5° ; with each a,, € A,
and d(an;, an;) gets arbitrarily small when 4,j > k for large enough k.
Hence, the subsequence (an, )72, is Cauchy. As (X, d) is complete,

(an, )72, converges to some x. By definition, z € B,so x € A and A is
non-empty.
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Completeness of (H(X), dyx))

Proof sketch. (cont.)
Reminder:

B = {x € X | x is a limit point of some (a;,)5>; with each a,, € A,} and
A= B.

((An)52y converges to A): Need to show that limy, o dyy(x)(An, A) = 0.
i.e. need to show lim,, 00 ds—g(Ap, A) = lim, o0 ds—s(A, A,,) = 0.
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Completeness of (H(X), dyx))

Proof sketch. (cont.)

Reminder:

B = {x € X | x is a limit point of some (a;,)5>; with each a,, € A,} and
A= B.

((An)52y converges to A): Need to show that limy, o dyy(x)(An, A) = 0.
i.e. need to show lim,, 00 ds—g(Ap, A) = lim, o0 ds—s(A, A,,) = 0.

lim,, 00 ds—s(B, Ay) = limy, 00 ds—s(Ay, B) = 0 can be shown with a
similar sequence argument to showing A # @. Hence,

limy, 00 dyy(x)(An, B) = 0. Since dy(x)(A, B) = 0 (won't prove this;
holds for closures in general), we have that lim,, ., dyy(x) (An, A) = 0.
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Completeness of (H(X), dyx))

Proof sketch. (cont.)
Reminder:

B = {x € X | x is a limit point of some (a,)5>; with each a,, € Ay} and
A=B.

(A is compact):

We leverage the fact that compact <= complete and totally bounded in
metric spaces.
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Completeness of (H(X), dyx))

Proof sketch. (cont.)

Reminder:

B = {x € X | x is a limit point of some (a,)5>; with each a,, € Ay} and
A=B.

(A is compact):

We leverage the fact that compact <= complete and totally bounded in
metric spaces.

Claim. A is closed.

A = B is a closure.
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Completeness of (H(X), dyx))

Proof sketch. (cont.)

Reminder:

B ={z € X | zis a limit point of some (a,)>2, with each a,, € A,} and
A=DB.

(A is compact):

We leverage the fact that compact <= complete and totally bounded in
metric spaces.

Claim. A is closed.

A = B is a closure.

Claim. A is complete.

A is a closed subset of a complete metric space. Thus, A is complete.
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Completeness of (H(X), dyx))

Proof sketch. (cont.)

Reminder:

B = {x € X | x is a limit point of some (a,)5; with each a,, € A} and
A=B.

Claim. A is totally bounded.

Fix £ > 0 and take n € Z large enough so that dyy(x)(An, 4) < e/2.
Since A, is compact, it is totally bounded and hence there are finitely
many ai,...,ax such that A, C S, (B a(a;)).
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Completeness of (H(X), dyx))

Proof sketch. (cont.)

Reminder:

B = {x € X | x is a limit point of some (a,)5; with each a,, € A} and
A=B.

Claim. A is totally bounded.

Fix £ > 0 and take n € Z large enough so that dyy(x)(An, 4) < e/2.
Since A,, is compact, it is totally bounded and hence there are finitely
many ai,...,ax such that A, C Ule (Beja(as)).

Take 7 € X. Since dy(x)(A, Ayn) < /2, there is a € A, such that
d(z,a) < e/2. Also, for some i, d(a,a;) < /2. Thus, d(z,a;) < €, so
x € Ule (B:(a;)). Hence, A is totally bounded.
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Completeness of (H(X), dyx))

Proof sketch. (cont.)

Reminder:

B = {x € X | x is a limit point of some (a,)5; with each a,, € A} and
A=B.

Claim. A is totally bounded.

Fix £ > 0 and take n € Z large enough so that dyy(x)(An, 4) < e/2.
Since A,, is compact, it is totally bounded and hence there are finitely
many ai,...,ax such that A, C Ule (Beja(as)).

Take 7 € X. Since dy(x)(A, Ayn) < /2, there is a € A, such that
d(z,a) < e/2. Also, for some i, d(a,a;) < /2. Thus, d(z,a;) < €, so
x € Ule (B:(a;)). Hence, A is totally bounded.

Claim. A is compact.

A is a complete and totally bounded subset of a metric space, so A is
compact.
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Completeness of (H(X), dyx))

Proof sketch. (cont.)

Reminder:

B = {x € X | x is a limit point of some (a,)5; with each a,, € A} and
A=B.

Claim. A is totally bounded.

Fix £ > 0 and take n € Z large enough so that dyy(x)(An, 4) < e/2.
Since A,, is compact, it is totally bounded and hence there are finitely
many ai,...,ax such that A, C Ule (Beja(as)).

Take 7 € X. Since dy(x)(A, Ayn) < /2, there is a € A, such that
d(z,a) < e/2. Also, for some i, d(a,a;) < /2. Thus, d(z,a;) < €, so

x € Ule (B:(a;)). Hence, A is totally bounded.

Claim. A is compact.

A is a complete and totally bounded subset of a metric space, so A is
compact.

Thus, A € H(X) and (A,,)22, converges to A. ]

n=1
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Completeness of (H(X), dyx))

Remark. An alternative version of this proof is an exercise in Munkres’
Topology (Second Edition; Chapter 45, Page 280, Exercise 7). Munkres
adapts a different, but equivalent definition of dy;(x. Showing the
equivalence is also a good exercise.
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Completeness of (H(X), dyx))

Remark. An alternative version of this proof is an exercise in Munkres’
Topology (Second Edition; Chapter 45, Page 280, Exercise 7). Munkres
adapts a different, but equivalent definition of dy;(x. Showing the

equivalence is also a good exercise.
We now have all the tools we need to show that a self-similar shape exists.
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Definitions from a while ago

Recall Definitions

Given a metric space (X, d),
An IFS U = {41,...,¢%} on X is a set of contraction maps 9; : X — X.
The iteration map is the function

Ul H(X) — H(X)
A— | ((4))

pew

A subset A € H(X) is called self-similar if there exists an IFS ¥ on X
such that A = Wl(A).

We usually take (X, d) complete, so then (H(X),dy (X)) is complete.
We're interested in a fixed point of a map on a complete metric space.
What gives us information about this?

Gabriel Field 28/April /2023 34 /46



Contraction Mapping Theorem

Theorem (Contraction Mapping)

Given (X, d) a metric space and f: X — X,
If f is a contraction and (X, d) is complete, then f has a unique fixed
point (a point x € X such that f(z) = z).

Proof. MATH2401. Very pretty. ]
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Contraction Mapping Theorem

Theorem (Contraction Mapping)

Given (X, d) a metric space and f: X — X,
If f is a contraction and (X, d) is complete, then f has a unique fixed
point (a point x € X such that f(z) = z).

Proof. MATH2401. Very pretty. ]
If we can show that the iteration map W' is contractive, this will show
that any IFS on a complete metric space has a unique associated
self-similar set.
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The iteration map is a contraction

Lemma

Given a metric space (X,d) and an IFS ¥ on X,
The iteration map ! indeed maps elements of H(X) to elements of
H(X), and W' is a contraction map on (H(X), dy(x))-

Proof.
(V! maps elements of H(X) to elements of H(X)):
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The iteration map is a contraction

Lemma

Given a metric space (X,d) and an IFS ¥ on X,
The iteration map ! indeed maps elements of H(X) to elements of
H(X), and W' is a contraction map on (H(X), dy(x))-

Proof.
(V! maps elements of H(X) to elements of H(X)):
Let A € H(X). Then, for each ¢ € U, since v is a contraction, it is

continuous (easy to verify). Since A is compact, it follows that ¥(A) is
compact.
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The iteration map is a contraction

Lemma

Given a metric space (X,d) and an IFS ¥ on X,
The iteration map ! indeed maps elements of H(X) to elements of
H(X), and W' is a contraction map on (H(X), dy(x))-

Proof.

(V! maps elements of H(X) to elements of H(X)):

Let A € H(X). Then, for each ¢ € U, since v is a contraction, it is
continuous (easy to verify). Since A is compact, it follows that ¥(A) is
compact.

Because U'(A) = Uyew(¥(A)) is a finite union of compact sets, UH(A)is
compact. Thus, ¥!(A) € H(X).
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The iteration map is a contraction

Proof. (cont.)
(V! is a contraction):
Let A, B € H(X). Then,

! ! = su in T
sV, B = s it ()

o inf ~ {d(z,y)}
mere\I/(’l’(A)){yeuwle\y(ﬂ"(B))

- wgf{xsz&{ﬁé%{ye% )
ds_s(V'(4), W'(B)) = max{sup{mm{mf{d vl }}}}

YU | gen lv'ev | beB
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The iteration map is a contraction
Proof. (cont.)

do_s(¥(4), TL(B) max{sup{/ {mf{d (a),¢'<b))}}}}

< f{Li (a,b
%ﬁ‘{:&z{é&{ o))

= max{Lip(1)} sup{lnf {d(a, b)}}

pevw acA
= Tﬁgg{Lip( )}ds—s(A, B)
= ds_g(¥'(A4),¥(B)) < Iﬁgg{Lip(fﬂ)} dy(x) (4, B)

Since each ¢ € WU is a contraction and there are finitely many ¢ € ¥, we
have that maxyey{Lip(¢)} < 1. Therefore, ! is contractive. ]
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The point of this talk

So finally...

Corollary

Given a complete metric space (X, d),

Each IFS ¥ on X admits a unique self-similar set.

Having already seen an IFS in R?, this guarantees that a self-similar set
exists.

Proof.

Gabriel Field 28/April /2023 39 /46



The point of this talk

So finally...

Corollary

Given a complete metric space (X, d),

Each IFS ¥ on X admits a unique self-similar set.

Having already seen an IFS in R?, this guarantees that a self-similar set
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The point of this talk

So finally...

Corollary

Given a complete metric space (X, d),

Each IFS ¥ on X admits a unique self-similar set.

Having already seen an IFS in R?, this guarantees that a self-similar set
exists.

Proof.

Ul is a contraction. ]
Remark. The unique self-similar set ¥ admits is known as the attractor of
U (hence the name of this talk).
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The point of this talk: Example

Examples

The self-similar set | passed around the room (affectionately, my ‘Sierpinski
pyramid') has the IFS ¥ = {4, ...

1
V)i x— —x

2
1 0
Yy ix— —x+ [ 1/2
2
0
1/4
¢5:xv—>§a¢+ 1/4
7/2

, 6} for i; : R® — R? given by
1/2
Yo:zr— sz + | 0
2
0
1/2
Ya:x— zx+ | 1/2
2
0
1/4
Ye:r— ——x+ | 1/4
7/2

Remark. That's my favourite fractal. Speaking of fractals...
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Fractals

Definition

Given an appropriate space X,

A subset A of X is called a fractal if it has non-integer dimension.
...Or other definitions, depending who you ask (Mandelbrot: Hausdorff
dimension > topological dimension).

The name comes from Latin Fractus, roughly meaning ‘broken’
The notion of dimension must be appropriately taken in context. So must
the requirements of the space X (X = R" is common).
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Self-similarity dimension of the Sierpinski Triangle

Examples

Consider the Sierpinski Triangle S. Scaling S by 1/2 (towards the
bottom-left corner) reduces the 'size’* of S by 1/3, so the dimension d
satisfies (1/2)? = 1/3. Hence, S has self-similarity dimension d = log,(3).

V.V V.

Figure: Sierpinski Triangle S

*Measure-theoretic details swept way under the rug. Relevant concepts:
Hausdorff measure H®, Hausdorff dimension dimy,.
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Connection between fractals and self-similarity

Question: Are all self-similar shapes fractals?
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https://en.wikipedia.org/wiki/Coastline_paradox

Connection between fractals and self-similarity

Question: Are all self-similar shapes fractals?
No. Here's the IFS of a square: WU = {31,..., 94} with ¢; : R? — R?

given by
1 1
1/11:x|—>§m ¢2:x|—>§w+(1(/)2)
1 0 1 1/2
¢3.x»—>§x+<1/2) ¢4.xlﬁ§x+<1/2>
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Connection between fractals and self-similarity

Question: Are all self-similar shapes fractals?
No. Here's the IFS of a square: WU = {31,..., 94} with ¢; : R? — R?

given by
. 1 ‘ 1 1/2
1/}1.$l—>§$ ¢2.x|—>§w+(0)
' 1 0 ) 1 1/2
¢3.$'—>§IE+<1/2) ¢4.x'—>§$+<1/2>

Question: Are all fractals self-similar?

Gabriel Field
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Connection between fractals and self-similarity

Question: Are all self-similar shapes fractals?
No. Here's the IFS of a square: WU = {31,..., 94} with ¢; : R? — R?
given by

1/11:x|—>%$ ¢2:xl—>%x+<162)
¢3:x'—>%x+ (1?2) ¢4:x'—>%x+ G?;)

Question: Are all fractals self-similar?

No. The west coast of Great Britain is a fractal with dimension ~ 1.25
(src: Wikipedia: Coastline paradox), but Great Britain doesn't contain
another Great Britain.
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Connection between fractals and self-similarity
“Fractals are typically not self-similar” (Grant Sanderson; 3B1B).

@7%, nifiond 4(9/6@9/—&%/,@2 exitt Ase

Figure: Self-Similarity compared to Fractals

Roots of Littlewood Polynomials (beauty.pdf)
Chaotic Sensing (ChaoS) fractal
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https://www.youtube.com/watch?v=gB9n2gHsHN4
https://math.ucr.edu/home/baez/roots/beauty.pdf
https://shakes76.github.io/ChaoS/

Thanks for listening!

| hope you have a better understanding and appreciation of self-similarity.
Any feedback on my talk would be very helpful.
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