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Goals

Main goal: You should leave this room convinced that a self-similar set
exists.
Other goals:

Give you a taste of basic fractal geometry

Give you an excuse to look at pretty pictures

Give you some familiarity with the tools and setting used
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Motivation (Pretty Pictures)

We’ll consider these...
One Billion Pyramids - Sierpinski 3D Fractal Trip

Figure: Sierpinski Triangle
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Motivation (Pretty Pictures)
We won’t consider these...

Figure: Algebraic Numbers
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Motivation (Pretty Pictures)
We won’t consider these...

Figure: Mandelbrot Set
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Spaces and Shapes

We work in a metric space.

Definition

A metric space is a pair (X, d) where d : X ×X → R≥0 satisfying that for
all x, y ∈ X,

(this property): d(x, y) = 0 iff x = y

(symmetry): d(x, y) = d(y, x)

(triangle inequality): d(x, y) ≤ d(x, z) + d(z, y)

Examples

(Rn, d) with d : (x, y) 7→ ∥x− y∥
Most things

A shape is any subset of X.
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Towards IFSes

We want to construct a self-similar shape.
How do we do it?

Figure: Construction of Sierpinski triangle

‘Cutting out’ seems appropriate, but doesn’t always work (see next slide)
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Towards IFSes

Example where ‘cutting out’ fails:

Figure: Barnsley Fern

Solution: use contraction maps to encode ‘self-similar copies’.
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Lipschitz Maps

Definition

Given metric spaces (X, dX), (Y, dY ) and L ≥ 0,
A map ψ : X → Y is called Lipschitz with constant L if for all x, x′ ∈ X,

dY (ψ(x), ψ(x
′)) ≤ LdX(x, x

′)

A map ψ is called Lipschitz if it is Lipschitz with constant L for some
L ≥ 0.
The Lipschitz constant of a Lipschitz map ψ is

Lip(ψ) = inf{L ≥ 0 | ψ is Lipschitz with constant L}

Remark

Any Lipschitz map ψ is Lipschitz with constant Lip(ψ).
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Contraction Maps

Definition

Given metric spaces (X, dX), (Y, dY ),
A map ψ : X → Y is called a contraction if it is Lipschitz with constant L
for some L ∈ [0, 1).

Equivalently, ψ is a contraction if it is Lipschitz and Lip(ψ) < 1.

Examples

ψ : [−2.5, 2.5] → R, x 7→ (x/3)3 has Lip(ψ) ≈ 0.69444 · · · .
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Contraction Maps: More Examples

Examples

The maps

ψ1 : R2 −→ R2 ψ2 : R2 −→ R2 ψ3 : R2 −→ R2

x 7−→ 1

2
x x 7−→ 1

2
x+

(
1/2
0

)
x 7−→ 1

2
x+

(
1/4√
3/2

)
are contractions with Lip(ψi) = 1/2 (for each i).
See these visualisations of the ψi.
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Iterated Function Systems

Definition

Given a metric space (X, d),
An Iterated Function System (IFS) on X is a finite collection
Ψ = {ψ1, . . . , ψn} of contraction maps ψi : X → X.

Definition

Given an IFS Ψ on a metric space (X, d),
The iteration map is the function

Ψ1 : H(X) −→ H(X)

A 7−→
⋃
ψ∈Ψ

(ψ(A))

(We will define the object H(X) ⊆ P(X) later.)

The idea: use contraction maps to encode the ‘self-similar copies’ in a
self-similar shape.
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IFS Example

Figure: Sierpinski Triangle S

Origin at lower-left corner of S. Then, S is described by the IFS
Ψ = {ψ1, ψ2, ψ3}.

ψ1 : R2 −→ R2 ψ2 : R2 −→ R2 ψ3 : R2 −→ R2

x 7−→ 1

2
x x 7−→ 1

2
x+

(
1/2
0

)
x 7−→ 1

2
x+

(
1/4√
3/2

)
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Self-Similarity

We can finally state what self-similarity is.

Definition

Given a metric space (X, d),
A (non-empty, compact) subset A ∈ H(X) is called self-similar if there
exists an IFS Ψ on X such that A = Ψ1(A).

So, a self-similar set is one which is fixed by the iteration map of some IFS.

It’s not yet obvious that a self-similar set exists. We need more machinery
to prove that.
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H(X)

When we look at the behaviour of the iteration map Ψ1, it would be useful
to track the ‘distance between sets’.

First, we restrict to a particular class of sets which we can precisely
measure the distance between.

Definition

Given a metric space (X, d),
Set H(X) = {A ⊆ X | A is non-empty and compact}.

Assumptions:

Non-empty: We can reasonably determine distances between sets.

Compact: Distances can be measured uniquely.

Some authors use H(X) as the collection of subsets which are non-empty,
closed and bounded. Conventions are equivalent in Euclidean spaces.
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Point-to-set distance dp−S

First measure the distance from a point to a set...

Definition

Given a metric space (X, d), a ∈ X and B ∈ H(X),
The point-to-set distance from a to B is dp−S(a,B) = infb∈B{d(a, b)}.

Figure: Point-to-set distance dp−S(a,B).
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Set-to-set distance dS−S

...then measure the distance from a set to a set...

Definition

Given a metric space (X, d) and A,B ∈ H(X),
The set-to-set distance from A to B is
dS−S(A,B) = supa∈A{dp−S(a,B)}.

Figure: Set-to-set distance dS−S(A,B)
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Is dS−S a metric?
Is dS−S a metric?

dS−S(A,B) ≥ 0: clear.

dS−S(A,B) = 0 iff. A = B might not be true...

dS−S(A,B) = dS−S(B,A) might not be true...

dS−S(A,B) ≤ dS−S(A,C) + dS−S(C,B): takes work; is true.

Consider...

Figure: dS−S is not a metric on H(X).
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Pompeiu-Hausdorff metric dH(X)

We fix these problems by forcing our ‘distance’ to take the worst-case
scenario.

Definition

Given a metric space (X, d),
The Pompeiu-Hausdorff metric on H(X) is the function

dH(X) : H(X)×H(X) −→ R≥0

(A,B) 7−→ max{dS−S(A,B), dS−S(B,A)}

dH(X)(A,B) < ε is equivalent to dS−S(A,B) < ε and dS−S(B,A) < ε.

Remark. The inf and sup seen so far are min and max when we restrict
to the compact sets in H(X).
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(H(X), dH(X)) is a metric space

Proposition

Given a metric space (X, d),
(H(X), dH(X)) is a metric space.

Proof sketch.
Let A,B,C ∈ H(X).

(dH(X)(A,B) ≥ 0): Clearly obvious.
(dH(X)(A,B) = 0 =⇒ A = B):
Since 0 = dS−S(A,B) = supa∈A{dp−S(a,B)}, we have that for all a ∈ A,
0 = dp−S(a,B) = infb∈B{d(a, b)}. Hence, a is a limit point of B; thus,
A ⊆ B̄. Symmetrically, B ⊆ Ā.
A,B are compact subsets of a metric space, so they are closed. Hence,
A = Ā = B̄ = B.
(dH(X)(A,B) = dH(X)(B,A)): Obviously clear.
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(H(X), dH(X)) is a metric space

Proof sketch. (cont.)
(dH(X)(A,B) ≤ dH(X)(A,C) + dH(X)(C,B)):
For all a ∈ A, b ∈ B, c ∈ C, we have that d(a, b) ≤ d(a, c) + d(c, b). The
triangle inequality for dS−S is obtained by taking appropriate
infima/suprema. This then gives the triangle inequality for dH(X).
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Completeness of (H(X), dH(X))

Definition

Given a metric space (X, d),
(X, d) is complete if for every Cauchy sequence (xn)

∞
n=1 in X, (xn)

∞
n=1

converges.

Proposition

Given a metric space (X, d),
If (X, d) is complete, then so is (H(X), dH(X)).

Proof sketch.
Let (An)

∞
n=1 be a Cauchy sequence in H(X). What could the limit be?

Set B = {x ∈ X | x is a limit point of some (an)
∞
n=1 with each an ∈ An}

and A = B̄.
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Completeness of (H(X), dH(X))

Proof sketch. (cont.)
Reminder:
B = {x ∈ X | x is a limit point of some (an)

∞
n=1 with each an ∈ An} and

A = B̄.
(A is non-empty): Take (Nk)

∞
k=1 a strictly increasing sequence of positive

integers such that for all m,n ≥ Nk, dH(X)(Am, An) < 2−k.

Some work shows that we can take a sequence (an)
∞
n=1 with each an ∈ An

and d(aNi , aNj ) gets arbitrarily small when i, j ≥ k for large enough k.
Hence, the subsequence (aNk)

∞
k=1 is Cauchy. As (X, d) is complete,

(aNk)
∞
k=1 converges to some x. By definition, x ∈ B, so x ∈ A and A is

non-empty.
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Completeness of (H(X), dH(X))

Proof sketch. (cont.)
Reminder:
B = {x ∈ X | x is a limit point of some (an)

∞
n=1 with each an ∈ An} and

A = B̄.
((An)

∞
n=1 converges to A): Need to show that limn→∞ dH(X)(An, A) = 0.

i.e. need to show limn→∞ dS−S(An, A) = limn→∞ dS−S(A,An) = 0.

limn→∞ dS−S(B,An) = limn→∞ dS−S(An, B) = 0 can be shown with a
similar sequence argument to showing A ̸= ∅. Hence,
limn→∞ dH(X)(An, B) = 0. Since dH(X)(A,B) = 0 (won’t prove this;
holds for closures in general), we have that limn→∞ dH(X)(An, A) = 0.
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Completeness of (H(X), dH(X))

Proof sketch. (cont.)
Reminder:
B = {x ∈ X | x is a limit point of some (an)

∞
n=1 with each an ∈ An} and

A = B̄.
(A is compact):
We leverage the fact that compact ⇐⇒ complete and totally bounded in
metric spaces.

Claim. A is closed.
A = B̄ is a closure.
Claim. A is complete.
A is a closed subset of a complete metric space. Thus, A is complete.
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Completeness of (H(X), dH(X))

Proof sketch. (cont.)
Reminder:
B = {x ∈ X | x is a limit point of some (an)

∞
n=1 with each an ∈ An} and

A = B̄.
Claim. A is totally bounded.
Fix ε > 0 and take n ∈ Z>0 large enough so that dH(X)(An, A) < ε/2.
Since An is compact, it is totally bounded and hence there are finitely
many a1, . . . , ak such that An ⊆

⋃k
i=1

(
Bε/2(ai)

)
.

Take x ∈ X. Since dH(X)(A,An) < ε/2, there is a ∈ An such that
d(x, a) < ε/2. Also, for some i, d(a, ai) < ε/2. Thus, d(x, ai) < ε, so
x ∈

⋃k
i=1 (Bε(ai)). Hence, A is totally bounded.

Claim. A is compact.
A is a complete and totally bounded subset of a metric space, so A is
compact.
Thus, A ∈ H(X) and (An)

∞
n=1 converges to A.
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Completeness of (H(X), dH(X))

Remark. An alternative version of this proof is an exercise in Munkres’
Topology (Second Edition; Chapter 45, Page 280, Exercise 7). Munkres
adapts a different, but equivalent definition of dH(X). Showing the
equivalence is also a good exercise.

We now have all the tools we need to show that a self-similar shape exists.
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Definitions from a while ago

Recall Definitions

Given a metric space (X, d),
An IFS Ψ = {ψ1, . . . , ψk} on X is a set of contraction maps ψi : X → X.
The iteration map is the function

Ψ1 : H(X) −→ H(X)

A 7−→
⋃
ψ∈Ψ

(ψ(A))

A subset A ∈ H(X) is called self-similar if there exists an IFS Ψ on X
such that A = Ψ1(A).

We usually take (X, d) complete, so then (H(X), dH(X)) is complete.
We’re interested in a fixed point of a map on a complete metric space.
What gives us information about this?
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Contraction Mapping Theorem

Theorem (Contraction Mapping)

Given (X, d) a metric space and f : X → X,
If f is a contraction and (X, d) is complete, then f has a unique fixed
point (a point x ∈ X such that f(x) = x).

Proof. MATH2401. Very pretty.

If we can show that the iteration map Ψ1 is contractive, this will show
that any IFS on a complete metric space has a unique associated
self-similar set.
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The iteration map is a contraction

Lemma

Given a metric space (X, d) and an IFS Ψ on X,
The iteration map Ψ1 indeed maps elements of H(X) to elements of
H(X), and Ψ1 is a contraction map on (H(X), dH(X)).

Proof.
(Ψ1 maps elements of H(X) to elements of H(X)):

Let A ∈ H(X). Then, for each ψ ∈ Ψ, since ψ is a contraction, it is
continuous (easy to verify). Since A is compact, it follows that ψ(A) is
compact.
Because Ψ1(A) =

⋃
ψ∈Ψ(ψ(A)) is a finite union of compact sets, Ψ1(A) is

compact. Thus, Ψ1(A) ∈ H(X).
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The iteration map is a contraction

Proof. (cont.)
(Ψ1 is a contraction):
Let A,B ∈ H(X). Then,

dS−S(Ψ
1(A),Ψ1(B)) = sup

x∈Ψ1(A)

{
inf

y∈Ψ1(B)
{d(x, y)}

}

= sup
x∈

⋃
ψ∈Ψ(ψ(A))

{
inf

y∈
⋃
ψ′∈Ψ(ψ′(B))

{d(x, y)}

}

= max
ψ∈Ψ

{
sup

x∈ψ(A)

{
min
ψ′∈Ψ

{
inf

y∈ψ′(B)
{d(x, y)}

}}}

dS−S(Ψ
1(A),Ψ1(B)) = max

ψ∈Ψ

{
sup
a∈A

{
min
ψ′∈Ψ

{
inf
b∈B

{
d(ψ(a), ψ′(b))

}}}}
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The iteration map is a contraction
Proof. (cont.)

dS−S(Ψ
1(A),Ψ1(B)) = max

ψ∈Ψ

{
sup
a∈A

{
min
ψ′∈Ψ

{
inf
b∈B

{
d(ψ(a), ψ′(b))

}}}}
≤ max

ψ∈Ψ

{
sup
a∈A

{
inf
b∈B

{d(ψ(a), ψ(b))}
}}

≤ max
ψ∈Ψ

{
sup
a∈A

{
inf
b∈B

{Lip(ψ) d(a, b)}
}}

= max
ψ∈Ψ

{Lip(ψ)} sup
a∈A

{
inf
b∈B

{d(a, b)}
}

= max
ψ∈Ψ

{Lip(ψ)} dS−S(A,B)

=⇒ dS−S(Ψ
1(A),Ψ1(B)) ≤ max

ψ∈Ψ
{Lip(ψ)} dH(X)(A,B)

Since each ψ ∈ Ψ is a contraction and there are finitely many ψ ∈ Ψ, we
have that maxψ∈Ψ{Lip(ψ)} < 1. Therefore, Ψ1 is contractive.
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The point of this talk

So finally...

Corollary

Given a complete metric space (X, d),
Each IFS Ψ on X admits a unique self-similar set.
Having already seen an IFS in R2, this guarantees that a self-similar set
exists.

Proof.

Ψ1 is a contraction.
Remark. The unique self-similar set Ψ admits is known as the attractor of
Ψ (hence the name of this talk).
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The point of this talk: Example

Examples

The self-similar set I passed around the room (affectionately, my ‘Sierpinski
pyramid’) has the IFS Ψ = {ψ1, . . . , ψ6} for ψi : R3 → R3 given by

ψ1 : x 7−→ 1

2
x ψ2 : x 7−→ 1

2
x+

1/2
0
0


ψ3 : x 7−→ 1

2
x+

 0
1/2
0

 ψ4 : x 7−→ 1

2
x+

1/2
1/2
0


ψ5 : x 7−→ 1

2
x+

 1/4
1/4√
7/2

 ψ6 : x 7−→ −1

2
x+

 1/4
1/4√
7/2


Remark. That’s my favourite fractal. Speaking of fractals...
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Fractals

Definition

Given an appropriate space X,
A subset A of X is called a fractal if it has non-integer dimension.
...Or other definitions, depending who you ask (Mandelbrot: Hausdorff
dimension > topological dimension).

The name comes from Latin Fractus, roughly meaning ‘broken’
The notion of dimension must be appropriately taken in context. So must
the requirements of the space X (X = Rn is common).
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Self-similarity dimension of the Sierpinski Triangle

Examples

Consider the Sierpinski Triangle S. Scaling S by 1/2 (towards the
bottom-left corner) reduces the ‘size’* of S by 1/3, so the dimension d
satisfies (1/2)d = 1/3. Hence, S has self-similarity dimension d = log2(3).

Figure: Sierpinski Triangle S

*Measure-theoretic details swept way under the rug. Relevant concepts:
Hausdorff measure Hd, Hausdorff dimension dimH.
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Connection between fractals and self-similarity

Question: Are all self-similar shapes fractals?

No. Here’s the IFS of a square: Ψ = {ψ1, . . . , ψ4} with ψi : R2 → R2

given by

ψ1 : x 7−→ 1

2
x ψ2 : x 7−→ 1

2
x+

(
1/2
0

)
ψ3 : x 7−→ 1

2
x+

(
0
1/2

)
ψ4 : x 7−→ 1

2
x+

(
1/2
1/2

)
Question: Are all fractals self-similar?
No. The west coast of Great Britain is a fractal with dimension ≈ 1.25
(src: Wikipedia: Coastline paradox), but Great Britain doesn’t contain
another Great Britain.
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Connection between fractals and self-similarity
“Fractals are typically not self-similar” (Grant Sanderson; 3B1B).

Figure: Self-Similarity compared to Fractals

Roots of Littlewood Polynomials (beauty.pdf)

Chaotic Sensing (ChaoS) fractal
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Thanks for listening!

I hope you have a better understanding and appreciation of self-similarity.
Any feedback on my talk would be very helpful.
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