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Presentation outline

▶ Review of dynamical systems
▶ ’Definitions’ of Chaos

▶ Sensitivity of intitial conditions
▶ Topological transitivity
▶ Denseness of periodicity

▶ The three-body problem and Poincaré

▶ Lorenz system and strange attractors

▶ Bonus Applications (time dependent)



Review of dynamical systems

A system where the next state is dependent on the current state.
Suppose x is an element of some space T , commonly Rn

▶ Discrete case: xn+1 = f (xn, n), n ∈ N.
▶ Continuous case: ẋ = f (x , t), t ∈ R.

where x ∈ Ω, t ∈ R.
A system is called autonomous if there is no time dependency i.e.
ẋ = f (x) or xn + 1 = f (xn).



Example: Arnold’s Cat Map

Suppose we have an image of size N × N comprised of discrete
points (in this case coloured pixels). Each points’s current position
can be denoted as (xn, yn).
Arnold’s Cat Map is the discrte dynamical system where,

xn+1 = (2xn + yn) mod N

yn+1 = (xn + yn) mod N

This represents a stretching of the image and then compression
back into the original shape.
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Iterations: 300



Periodicity

Although 300 iterations seems like a nice number to have for a
period (especially as the image is 150 pixels wide or N = 150) the
actual periodicity of this map is more complex.



Chaotic systems

Although conceptually somewhat intuitive, there is no unified
mathematical definition for what chaos is.

▶ ”The complicated aperiodic attracting orbits of certain,
usually low-dimensional dynamical systems” - Phillip Holmes

▶ ”A kind of order without periodicity” - Bai-Lin Hao

▶ ”When the present determines the future, but the
approximate present does not approximately determine the
future” - Edward Lorenz



Chaotic systems

More mathematically, a system can be called chaotic if it,

▶ is sensitive to the initial conditions of the system

▶ is topologically transitive

▶ has a dense collection of points with periodic orbits



Initial condition sensitivity and Lyapunov exponents

We can characterise the sensitivity of a system to intial conditions
using Lyapunov exponents.
Suppose we have two trajectories of a dynamic system, x(t) and
y(t) which are seperated by a vector δ(t) such that
y(t) = x(t) + δ(t), ∀t ∈ R.
If x and y begin infinitesimally close (i.e. ||δ(0)|| = ε > 0) then we
can say that ||δ(t)|| ≈ εeλt for some λ called the Lyapunov
exponent.
A positive maximum Lyapunov exponent is generally an indicator
of a chaotic system



Topological transitivity

A map f : X → X is topologically transitive if for any pair of
non-empty open sets U,V ⊂ X there exists a k > 0 such that
f k(U) ∩ V ̸= ∅.
In words, repeated applications of a function on any subset of its
domain eventually overlaps with any other subset.
Or, the function effectively mixes a subset of points across the
domain.
This condition on chaotic systems implies that it is impossible to
decompose the system into two open sets.



Denseness of periodic orbits

Given any point there is a periodic orbit that comes arbitrarily
close to it.
Counterintuitive?
Due to the sensitivity to initial conditions and topological
transitivity these periodic orbits must be unstable, thus
guaranteeing an abundance of aperiodic behaviour.



The three body problem

Three bodies with masses m1,m2,m3 and positions r1, r2, r3
interact with each other via gravity in space.
Using Newton’s laws of motion and gravity we can generate the
following sets of second order differential equations.

r̈1 = −Gm2
r1 − r2

|r1 − r2|3
− Gm3

r1 − r3

|r1 − r3|3
,

r̈2 = −Gm1
r2 − r1

|r2 − r1|3
− Gm3

r2 − r3

|r2 − r3|3
,

r̈3 = −Gm1
r3 − r1

|r3 − r1|3
− Gm2

r3 − r2

|r3 − r2|3
,



Poincaré

In the 1880s, French mathematician Henri Poincaré became
interested in solving this problem, by first analysing the restricted
three body problem.
Poincaré’s plan was to first solve this version and then generalise
the solution into the full three body problem.



Poincaré

Poincaré discovered that for this restricted case, ”the three bodies
will return arbitrarily close to their initial position infinitely many
times”
However when he attempted to generalise he discovered that most
orbits neither converged to a periodic orbit or a fixed point but yet
remained bounded.
He concluded that he did not have the analytic tools required to
solve the general case.



Poincaré

Poincaré was deeply disheartened with these results, and wrote
I believed when I started this work that once the solution
of the problem was found for the specific case that I dealt
with it would be immediately generalizable without having
to overcome any new difficulties outside of those which are
due to the larger number of variables and the impossibility
of a geometric representation. I was mistaken.



The three body problem

We now know that the three body problem does not have a closed
form solution (i.e. one which can be expressed with a finite
number of mathematical solutions).
However, of more interest to us are the orbits Poincaré was
frustrated by.
What Poincaré discovered by accident was the first evidence of
chaos in a well defined dynamic system.
It is worth noting how ahead of its time this discovery is.



Lorenz, Fetter, and Hamilton

The next breakthrough in chaos theory was 70 years after
Poincaré’s discovereries and 16 years after the invention of the
computer.
While investigating a simple atmospheric model mathematician
Edward Lorenz, and computer scientists Ellen Fetter and Margaret
Hamilton attempted to rerun the second half of a simulation.
After entering the point’s position at the half time point, they
discovered the restarted simulation was wildly different from the
original.



The Lorenz system

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

where σ, ρ, β are constant parameters.



The Lorenz system



The Lorenz system



The Lorenz system



The Lorenz system

The shape of a particles trajectory, inspired Lorenz to coin the
term the ’Butterfly effect’ to describe the sensitivity of the system
to initial conditions.
Additionally this system demonstrates a ’strange attractor’



The Lorenz system



The Lorenz system

Ultimately these results frustrated Lorenz who stated,

. . . that [the] prediction of the sufficiently distant future is
impossible by any method, unless the present conditions
are known exactly.



Traffic Modelling

Many traffic models assume things like a steady density of cars,
and a steady flow.
When these assumptions are discarded, models can exhibit chaotic
behaviour.



Traffic Modelling



Traffic Modelling

Looking at the Lyapunov exponents of each car,

Car Lyapunov exponent

1 -0.2873
2 -0.1367
3 -0.0039
4 2.8287
5 3.0316
6 4.5879

Clear to see that cars 4-6 exhibit chaotic behaviour.



Traffic Modelling

This type of chaos analysis can also be applied to entire traffic
system, as oppposed to car by car basis, and be used to predict
what events cause chaos and to design systems to avoid chaotic
behaviour.



Population Modelling

dX

dt
= a1X − b1X

2 − wYX

X + D
,

dY

dt
= −a2Y +

w1YX

X + D1
− w2YU

Y + D2
,

dZ

dt
= AZ (1− Z

K
)− w3UZ

Z + D3
,

dU

dt
= cU − w4U

2

Y + Z

Where species X is a prey animal, Y is a specialist predator which
only eats X , Z is another prey animal, and U is a generalist
predator.



Population Modelling

Authors found that with certain parameters this system behaves
chaotically and is hard to predict.
Authors also found that this is especially the case after the loss of
one species.



Questions


