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Motivation For Supergeometry

There are two families of subatomic particles:

1. bosons (force)
2. fermions (matter)

Bosons require commuting operators while fermions require
anti-commuting operators.

Locally, a supermanifold has both even and odd coordinates.
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History of the Theory

Mathematician Year Type of Supermanifold
Berezin 1987 Topological Manifold + Sheaf
DeWitt 1984 Set + Atlas
Leites 1980 Topological Manifold + Sheaf
Batchelor 1980 Set + Atlas
Rogers 1980 Set + Atlas
Kostant 1975 Topological Manifold + Sheaf

The goal of this project was to understand each definition and their
connections.
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Supernumbers - Grassman Algebra

Take k formal symbols, β1, · · · , βk , and impose βiβj = −βjβi .

Elements of the Grassman algebra, Bk , look like

X = X0 +
k∑

i=1
Xiβi +

∑
i<j

Xijβiβj + · · · +

+
∑

µ1<···<µk−1

Xµ1···µk−1βµ1 · · ·βµk−1 + X1···kβ1 · · ·βk .

Example
Take X ∈ B2. X could be 1 + 2β1 + 3β2 + 4β1β2.
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Supernumbers

We can split Bk into Bk,0 and Bk,1.

• Bk,0 has elements with an even number of generators i.e 1 + 4β1β2

• Bk,1 has elements with an odd number of generators i.e 2β1 + 3β2

Remark
At this point we see how a few different definitions can come about:

• Rogers’ supermanifold uses Bn or B∞ (ℓ1 with a certain
multiplication defined.)

• DeWitt’s supermanifold uses W∞ (a Grassman algebra with infinite
generators.)

• Batchelor’s supermanifold uses Bn but places a coarse topology on it.
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Flat Superspace and the Body Map

Define flat superspace as Bm,n
k := Bk,0 × · · · × Bk,0︸ ︷︷ ︸

m times

× Bk,1 × · · · × Bk,1︸ ︷︷ ︸
n times

.

An element of Bm,n
k looks like (x1, · · · , xm, ξ1, · · · , ξn) = (x ; ξ).

Example - The Body Map
Take a supernumber X = 1 + 2β1 + 3β2 + 4β1β2 in B2.

ε : Bk → R is a linear map.

Here, ε(X ) = 1.

The body map extends to εm,n : Bm,n
k → Rm by

(x ; ξ) 7→ (ε(x1), · · · , ε(xm)).
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Topology

We can place two interesting topologies on superspace:

• U ⊂ Bm,n
L is open in the DeWitt topology if there is an open set

V ⊂ Rm such that ε−1
m,n(V ) = U.

• The product topology on Bm,n
L is the coarsest topology that ensures

the projection maps onto BL,0 and BL,1 are continuous.

The DeWitt topology is not even Hausdorff! Yet somehow it still makes
the most sense on these spaces. . .
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Supersmooth Functions

Question
What does it mean for f : Bm,n

k → Bk to be smooth on U ⊂ Bm,n
k ?

Define fµ : εm,n(U) ⊂ Rm → Bk , to be smooth if the coefficient functions
are smooth.

We want these functions to have a domain in Bm,n
k ...

⇝ Grassman analytic continuation f̂µ(x ; ξ)

We say f is G∞ if there exist smooth fµ : εm,n(U) → Bk such that

f (x ; ξ) =
∑

µ

f̂µ(x ; ξ)ξµ.

Here µ = (µ1, · · · , µl) such that 1 ≤ µ1 < · · · < µl ≤ k.
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Supersmooth Functions

Example

Define f : B1,1
2 → B2 by (x , ξ) 7→ (1 + 2β1 + 3β2 + 4β1β2) + ξ.

Define f0(ε(x)) = 1 + 2β1 + 3β2 + 4β1β2, f1(ε(x)) = 1.

Extending the domain of f0 and f1, we find

f (x ; ξ) = f̂0(x , ξ) + f̂1(x , ξ)ξ

We can also have an H∞ function, where the fµ map into R not Bk .
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Smooth Manifolds

M

VU

φ

Rn Rn

ψ

ψ ◦ φ−1
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G∞ Supermanifolds - Rogers’ Approach

An (m, n)-dimensional G∞ supermanifold is a topological space M
equipped with chart maps, φ : U → Bm,n

k , taking open sets into flat
superspace.

In analogy to a smooth manifold, we want the transition functions
ψ ◦ φ−1 to be G∞.

Examples

• Flat superspace Bm,n
k

• Every smooth manifold - take n = 0
• Super real projective space SRPm,n

• Lie supergroups - general linear supergroup GL(m|n), special linear
supergroup SL(m|n), orthosymplectic supergroup OSP(m|n).
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Sheaf Theoretic Approach - What is a Sheaf?

For each U ⊂ Rn, we have an algebra of smooth functions C∞(U).

• Given U ⊂ V ⊂ Rn, we can restrict functions:

f : V → R⇝ f |U : U → R.

Restriction is transitive and restricting a function from a set to itself
does nothing.

• Take a covering {Ui} of U, and a family {fi} with fi : Ui → R such
that fi |Ui ∩Uj = fj |Ui ∩Uj .
We can find a unique f : U → R such that f |Ui = fi .

The above defines a sheaf!
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Sheaf Theoretic Approach - Smooth Manifolds

Let M be a Hausdorff, second countable topological space.

Equip M with a sheaf of commutative algebras: U 7→ O(U) subject to
those two conditions (restrictions and gluing).

(M,O) is a smooth manifold if

• M is locally homeomorphic to Rn as a topological space, and
• O is locally isomorphic (as a sheaf) to C∞

Rn (the sheaf of smooth
functions on Rn).

Theorem
The two definitions of a smooth manifold are equivalent.

Showing atlas → sheaf is easy.The topological homeomorphism gives us
chart maps. We just need to check the transition functions are smooth.
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Sheaf Theoretic Approach - Supermanifolds

We still have a Hausdorff, second countable topological space M.

Equip M with a sheaf of supercommutative algebras OM .

U 7→ O(U) = O(U)0 ⊕ O(U)1.

M = (M,OM) is a Berezin-Kostant-Leites supermanifold of dimension
p, q if OM is locally isomorphic to C∞

Rp ⊗
∧

(ξ1, · · · , ξq) and M is locally
homeomorphic to Rp.

Theorem
The definition of Berezin-Kostant-Leites supermanifolds is equivalent to
supermanifolds that use Bk (finite generators), the DeWitt topology
(coarse, non-hausdorff), and H∞ functions.
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We still have a Hausdorff, second countable topological space M.

Equip M with a sheaf of supercommutative algebras OM .

U 7→ O(U) = O(U)0 ⊕ O(U)1.

M = (M,OM) is a Berezin-Kostant-Leites supermanifold of dimension
p, q if OM is locally isomorphic to C∞

Rp ⊗
∧

(ξ1, · · · , ξq) and M is locally
homeomorphic to Rp.

Theorem
The definition of Berezin-Kostant-Leites supermanifolds is equivalent to
supermanifolds that use Bk (finite generators), the DeWitt topology
(coarse, non-hausdorff), and H∞ functions.
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Tying the Definitions Together

G∞ supermanifold (Prod. Top)

H∞ supermanifold (Prod. Top)

H∞ DeWitt supermanifold

G∞ DeWitt Top.
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