Supermanifolds - Who Cares?

Ben Kruger
Maths Talks Week 5
University of Queensland

Motivation For Supergeometry

There are two families of subatomic particles:

1. bosons (force)
2. fermions (matter)

Motivation For Supergeometry

There are two families of subatomic particles:

1. bosons (force)
2. fermions (matter)

Bosons require commuting operators while fermions require anti-commuting operators.

Motivation For Supergeometry

There are two families of subatomic particles:

1. bosons (force)
2. fermions (matter)

Bosons require commuting operators while fermions require anti-commuting operators.

Locally, a supermanifold has both even and odd coordinates.

History of the Theory

Mathematician	Year	Type of Supermanifold
Berezin	1987	Topological Manifold + Sheaf
DeWitt	1984	Set + Atlas
Leites	1980	Topological Manifold + Sheaf
Batchelor	1980	Set + Atlas
Rogers	1980	Set + Atlas
Kostant	1975	Topological Manifold + Sheaf

The goal of this project was to understand each definition and their connections.

Supernumbers - Grassman Algebra

Take k formal symbols, $\beta_{1}, \cdots, \beta_{k}$, and impose $\beta_{i} \beta_{j}=-\beta_{j} \beta_{i}$.

Supernumbers - Grassman Algebra

Take k formal symbols, $\beta_{1}, \cdots, \beta_{k}$, and impose $\beta_{i} \beta_{j}=-\beta_{j} \beta_{i}$.
Elements of the Grassman algebra, B_{k}, look like

$$
\begin{aligned}
X & =X_{0}+\sum_{i=1}^{k} x_{i} \beta_{i}+\sum_{i<j} x_{i j} \beta_{i} \beta_{j}+\cdots+ \\
& +\sum_{\mu_{1}<\cdots<\mu_{k-1}} x_{\mu_{1} \cdots \mu_{k-1}} \beta_{\mu_{1}} \cdots \beta_{\mu_{k-1}}+x_{1 \cdots k} \beta_{1} \cdots \beta_{k} .
\end{aligned}
$$

Supernumbers - Grassman Algebra

Take k formal symbols, $\beta_{1}, \cdots, \beta_{k}$, and impose $\beta_{i} \beta_{j}=-\beta_{j} \beta_{i}$.
Elements of the Grassman algebra, B_{k}, look like

$$
\begin{aligned}
X & =X_{0}+\sum_{i=1}^{k} X_{i} \beta_{i}+\sum_{i<j} x_{i j} \beta_{i} \beta_{j}+\cdots+ \\
& +\sum_{\mu_{1}<\cdots<\mu_{k-1}} X_{\mu_{1} \cdots \mu_{k-1}} \beta_{\mu_{1}} \cdots \beta_{\mu_{k-1}}+X_{1 \cdots k} \beta_{1} \cdots \beta_{k} .
\end{aligned}
$$

Example

Take $X \in B_{2}$. X could be $1+2 \beta_{1}+3 \beta_{2}+4 \beta_{1} \beta_{2}$.

Supernumbers

We can split B_{k} into $B_{k, 0}$ and $B_{k, 1}$.

Supernumbers

We can split B_{k} into $B_{k, 0}$ and $B_{k, 1}$.

- $B_{k, 0}$ has elements with an even number of generators i.e $1+4 \beta_{1} \beta_{2}$

Supernumbers

We can split B_{k} into $B_{k, 0}$ and $B_{k, 1}$.

- $B_{k, 0}$ has elements with an even number of generators i.e $1+4 \beta_{1} \beta_{2}$
- $B_{k, 1}$ has elements with an odd number of generators i.e $2 \beta_{1}+3 \beta_{2}$

Supernumbers

We can split B_{k} into $B_{k, 0}$ and $B_{k, 1}$.

- $B_{k, 0}$ has elements with an even number of generators i.e $1+4 \beta_{1} \beta_{2}$
- $B_{k, 1}$ has elements with an odd number of generators i.e $2 \beta_{1}+3 \beta_{2}$

Remark

At this point we see how a few different definitions can come about:

Supernumbers

We can split B_{k} into $B_{k, 0}$ and $B_{k, 1}$.

- $B_{k, 0}$ has elements with an even number of generators i.e $1+4 \beta_{1} \beta_{2}$
- $B_{k, 1}$ has elements with an odd number of generators i.e $2 \beta_{1}+3 \beta_{2}$

Remark

At this point we see how a few different definitions can come about:

- Rogers' supermanifold uses B_{n} or B_{∞} (ℓ_{1} with a certain multiplication defined.)

Supernumbers

We can split B_{k} into $B_{k, 0}$ and $B_{k, 1}$.

- $B_{k, 0}$ has elements with an even number of generators i.e $1+4 \beta_{1} \beta_{2}$
- $B_{k, 1}$ has elements with an odd number of generators i.e $2 \beta_{1}+3 \beta_{2}$

Remark

At this point we see how a few different definitions can come about:

- Rogers' supermanifold uses B_{n} or B_{∞} (ℓ_{1} with a certain multiplication defined.)
- DeWitt's supermanifold uses W_{∞} (a Grassman algebra with infinite generators.)

Supernumbers

We can split B_{k} into $B_{k, 0}$ and $B_{k, 1}$.

- $B_{k, 0}$ has elements with an even number of generators i.e $1+4 \beta_{1} \beta_{2}$
- $B_{k, 1}$ has elements with an odd number of generators i.e $2 \beta_{1}+3 \beta_{2}$

Remark

At this point we see how a few different definitions can come about:

- Rogers' supermanifold uses B_{n} or B_{∞} (ℓ_{1} with a certain multiplication defined.)
- DeWitt's supermanifold uses W_{∞} (a Grassman algebra with infinite generators.)
- Batchelor's supermanifold uses B_{n} but places a coarse topology on it.

Flat Superspace and the Body Map

Define flat superspace as $B_{k}^{m, n}:=\underbrace{B_{k, 0} \times \cdots \times B_{k, 0}}_{m \text { times }} \times \underbrace{B_{k, 1} \times \cdots \times B_{k, 1}}_{n \text { times }}$.

Flat Superspace and the Body Map

Define flat superspace as $B_{k}^{m, n}:=\underbrace{B_{k, 0} \times \cdots \times B_{k, 0}}_{m \text { times }} \times \underbrace{B_{k, 1} \times \cdots \times B_{k, 1}}_{n \text { times }}$.
An element of $B_{k}^{m, n}$ looks like $\left(x_{1}, \cdots, x_{m}, \xi_{1}, \cdots, \xi_{n}\right)=(x ; \xi)$.

Flat Superspace and the Body Map

Define flat superspace as $B_{k}^{m, n}:=\underbrace{B_{k, 0} \times \cdots \times B_{k, 0}}_{m \text { times }} \times \underbrace{B_{k, 1} \times \cdots \times B_{k, 1}}_{n \text { times }}$.
An element of $B_{k}^{m, n}$ looks like $\left(x_{1}, \cdots, x_{m}, \xi_{1}, \cdots, \xi_{n}\right)=(x ; \xi)$.

Example - The Body Map

Take a supernumber $X=1+2 \beta_{1}+3 \beta_{2}+4 \beta_{1} \beta_{2}$ in B_{2}.
$\varepsilon: B_{k} \rightarrow \mathbb{R}$ is a linear map.
Here, $\varepsilon(X)=1$.

Flat Superspace and the Body Map

Define flat superspace as $B_{k}^{m, n}:=\underbrace{B_{k, 0} \times \cdots \times B_{k, 0}}_{m \text { times }} \times \underbrace{B_{k, 1} \times \cdots \times B_{k, 1}}_{n \text { times }}$.
An element of $B_{k}^{m, n}$ looks like $\left(x_{1}, \cdots, x_{m}, \xi_{1}, \cdots, \xi_{n}\right)=(x ; \xi)$.

Example - The Body Map

Take a supernumber $X=1+2 \beta_{1}+3 \beta_{2}+4 \beta_{1} \beta_{2}$ in B_{2}.
$\varepsilon: B_{k} \rightarrow \mathbb{R}$ is a linear map.
Here, $\varepsilon(X)=1$.
The body map extends to $\varepsilon_{m, n}: B_{k}^{m, n} \rightarrow \mathbb{R}^{m}$ by $(x ; \xi) \mapsto\left(\varepsilon\left(x_{1}\right), \cdots, \varepsilon\left(x_{m}\right)\right)$.

Topology

We can place two interesting topologies on superspace:

- $U \subset B_{L}^{m, n}$ is open in the DeWitt topology if there is an open set $V \subset \mathbb{R}^{m}$ such that $\varepsilon_{m, n}^{-1}(V)=U$.

Topology

We can place two interesting topologies on superspace:

- $U \subset B_{L}^{m, n}$ is open in the DeWitt topology if there is an open set $V \subset \mathbb{R}^{m}$ such that $\varepsilon_{m, n}^{-1}(V)=U$.
- The product topology on $B_{L}^{m, n}$ is the coarsest topology that ensures the projection maps onto $B_{L, 0}$ and $B_{L, 1}$ are continuous.

Topology

We can place two interesting topologies on superspace:

- $U \subset B_{L}^{m, n}$ is open in the DeWitt topology if there is an open set $V \subset \mathbb{R}^{m}$ such that $\varepsilon_{m, n}^{-1}(V)=U$.
- The product topology on $B_{L}^{m, n}$ is the coarsest topology that ensures the projection maps onto $B_{L, 0}$ and $B_{L, 1}$ are continuous.

The DeWitt topology is not even Hausdorff! Yet somehow it still makes the most sense on these spaces...

Supersmooth Functions

Question

What does it mean for $f: B_{k}^{m, n} \rightarrow B_{k}$ to be smooth on $U \subset B_{k}^{m, n}$?

Supersmooth Functions

Question

What does it mean for $f: B_{k}^{m, n} \rightarrow B_{k}$ to be smooth on $U \subset B_{k}^{m, n}$?
Define $f_{\mu}: \varepsilon_{m, n}(U) \subset \mathbb{R}^{m} \rightarrow B_{k}$, to be smooth if the coefficient functions are smooth.

Supersmooth Functions

Question

What does it mean for $f: B_{k}^{m, n} \rightarrow B_{k}$ to be smooth on $U \subset B_{k}^{m, n}$?
Define $f_{\mu}: \varepsilon_{m, n}(U) \subset \mathbb{R}^{m} \rightarrow B_{k}$, to be smooth if the coefficient functions are smooth.

We want these functions to have a domain in $B_{k}^{m, n} \ldots$

Supersmooth Functions

Question

What does it mean for $f: B_{k}^{m, n} \rightarrow B_{k}$ to be smooth on $U \subset B_{k}^{m, n}$?
Define $f_{\mu}: \varepsilon_{m, n}(U) \subset \mathbb{R}^{m} \rightarrow B_{k}$, to be smooth if the coefficient functions are smooth.

We want these functions to have a domain in $B_{k}^{m, n} \ldots$
\rightsquigarrow Grassman analytic continuation $\widehat{f_{\mu}}(x ; \xi)$

Supersmooth Functions

Question

What does it mean for $f: B_{k}^{m, n} \rightarrow B_{k}$ to be smooth on $U \subset B_{k}^{m, n}$?
Define $f_{\mu}: \varepsilon_{m, n}(U) \subset \mathbb{R}^{m} \rightarrow B_{k}$, to be smooth if the coefficient functions are smooth.

We want these functions to have a domain in $B_{k}^{m, n} \ldots$ \rightsquigarrow Grassman analytic continuation $\widehat{f_{\mu}}(x ; \xi)$
We say f is G^{∞} if there exist smooth $f_{\mu}: \varepsilon_{m, n}(U) \rightarrow B_{k}$ such that

$$
f(x ; \xi)=\sum_{\mu} \widehat{f}_{\mu}(x ; \xi) \xi_{\mu} .
$$

Here $\mu=\left(\mu_{1}, \cdots, \mu_{I}\right)$ such that $1 \leq \mu_{1}<\cdots<\mu_{I} \leq k$.

Supersmooth Functions

Example

Define $f: B_{2}^{1,1} \rightarrow B_{2}$ by $(x, \xi) \mapsto\left(1+2 \beta_{1}+3 \beta_{2}+4 \beta_{1} \beta_{2}\right)+\xi$.
Define $f_{0}(\varepsilon(x))=1+2 \beta_{1}+3 \beta_{2}+4 \beta_{1} \beta_{2}, \quad f_{1}(\varepsilon(x))=1$.
Extending the domain of f_{0} and f_{1}, we find

$$
f(x ; \xi)=\widehat{f}_{0}(x, \xi)+\widehat{f}_{1}(x, \xi) \xi
$$

Supersmooth Functions

Example

Define $f: B_{2}^{1,1} \rightarrow B_{2}$ by $(x, \xi) \mapsto\left(1+2 \beta_{1}+3 \beta_{2}+4 \beta_{1} \beta_{2}\right)+\xi$.
Define $f_{0}(\varepsilon(x))=1+2 \beta_{1}+3 \beta_{2}+4 \beta_{1} \beta_{2}, \quad f_{1}(\varepsilon(x))=1$.
Extending the domain of f_{0} and f_{1}, we find

$$
f(x ; \xi)=\widehat{f}_{0}(x, \xi)+\widehat{f}_{1}(x, \xi) \xi
$$

We can also have an H^{∞} function, where the f_{μ} map into \mathbb{R} not B_{k}.

Smooth Manifolds

G^{∞} Supermanifolds - Rogers' Approach

An (m, n)-dimensional G^{∞} supermanifold is a topological space M equipped with chart maps, $\varphi: U \rightarrow B_{k}^{m, n}$, taking open sets into flat superspace.

G^{∞} Supermanifolds - Rogers' Approach

An (m, n)-dimensional G^{∞} supermanifold is a topological space M equipped with chart maps, $\varphi: U \rightarrow B_{k}^{m, n}$, taking open sets into flat superspace.

In analogy to a smooth manifold, we want the transition functions $\psi \circ \varphi^{-1}$ to be G^{∞}.

G^{∞} Supermanifolds - Rogers' Approach

An (m, n)-dimensional G^{∞} supermanifold is a topological space M equipped with chart maps, $\varphi: U \rightarrow B_{k}^{m, n}$, taking open sets into flat superspace.

In analogy to a smooth manifold, we want the transition functions $\psi \circ \varphi^{-1}$ to be G^{∞}.

Examples

- Flat superspace $B_{k}^{m, n}$

G^{∞} Supermanifolds - Rogers' Approach

An (m, n)-dimensional G^{∞} supermanifold is a topological space M equipped with chart maps, $\varphi: U \rightarrow B_{k}^{m, n}$, taking open sets into flat superspace.

In analogy to a smooth manifold, we want the transition functions $\psi \circ \varphi^{-1}$ to be G^{∞}.

Examples

- Flat superspace $B_{k}^{m, n}$
- Every smooth manifold - take $n=0$

G^{∞} Supermanifolds - Rogers' Approach

An (m, n)-dimensional G^{∞} supermanifold is a topological space M equipped with chart maps, $\varphi: U \rightarrow B_{k}^{m, n}$, taking open sets into flat superspace.

In analogy to a smooth manifold, we want the transition functions $\psi \circ \varphi^{-1}$ to be G^{∞}.

Examples

- Flat superspace $B_{k}^{m, n}$
- Every smooth manifold - take $n=0$
- Super real projective space $\mathbb{S} \mathbb{R} P^{m, n}$

G^{∞} Supermanifolds - Rogers' Approach

An (m, n)-dimensional G^{∞} supermanifold is a topological space M equipped with chart maps, $\varphi: U \rightarrow B_{k}^{m, n}$, taking open sets into flat superspace.

In analogy to a smooth manifold, we want the transition functions $\psi \circ \varphi^{-1}$ to be G^{∞}.

Examples

- Flat superspace $B_{k}^{m, n}$
- Every smooth manifold - take $n=0$
- Super real projective space $\mathbb{S} \mathbb{R} P^{m, n}$
- Lie supergroups - general linear supergroup $G L(m \mid n)$, special linear supergroup $S L(m \mid n)$, orthosymplectic supergroup $\operatorname{OSP}(m \mid n)$.

Sheaf Theoretic Approach - What is a Sheaf?

For each $U \subset \mathbb{R}^{n}$, we have an algebra of smooth functions $\mathcal{C}^{\infty}(U)$.

Sheaf Theoretic Approach - What is a Sheaf?

For each $U \subset \mathbb{R}^{n}$, we have an algebra of smooth functions $\mathcal{C}^{\infty}(U)$.

- Given $U \subset V \subset \mathbb{R}^{n}$, we can restrict functions:

$$
f:\left.V \rightarrow \mathbb{R} \rightsquigarrow f\right|_{U}: U \rightarrow \mathbb{R}
$$

Sheaf Theoretic Approach - What is a Sheaf?

For each $U \subset \mathbb{R}^{n}$, we have an algebra of smooth functions $\mathcal{C}^{\infty}(U)$.

- Given $U \subset V \subset \mathbb{R}^{n}$, we can restrict functions:

$$
f:\left.V \rightarrow \mathbb{R} \rightsquigarrow f\right|_{U}: U \rightarrow \mathbb{R}
$$

Restriction is transitive and restricting a function from a set to itself does nothing.

Sheaf Theoretic Approach - What is a Sheaf?

For each $U \subset \mathbb{R}^{n}$, we have an algebra of smooth functions $\mathcal{C}^{\infty}(U)$.

- Given $U \subset V \subset \mathbb{R}^{n}$, we can restrict functions:

$$
f:\left.V \rightarrow \mathbb{R} \rightsquigarrow f\right|_{U}: U \rightarrow \mathbb{R}
$$

Restriction is transitive and restricting a function from a set to itself does nothing.

- Take a covering $\left\{U_{i}\right\}$ of U, and a family $\left\{f_{i}\right\}$ with $f_{i}: U_{i} \rightarrow \mathbb{R}$ such that $f_{i}\left|U_{i} \cap U_{j}=f_{j}\right| U_{i} \cap U_{j}$.
We can find a unique $f: U \rightarrow \mathbb{R}$ such that $\left.f\right|_{U_{i}}=f_{i}$.

Sheaf Theoretic Approach - What is a Sheaf?

For each $U \subset \mathbb{R}^{n}$, we have an algebra of smooth functions $\mathcal{C}^{\infty}(U)$.

- Given $U \subset V \subset \mathbb{R}^{n}$, we can restrict functions:

$$
f:\left.V \rightarrow \mathbb{R} \rightsquigarrow f\right|_{U}: U \rightarrow \mathbb{R}
$$

Restriction is transitive and restricting a function from a set to itself does nothing.

- Take a covering $\left\{U_{i}\right\}$ of U, and a family $\left\{f_{i}\right\}$ with $f_{i}: U_{i} \rightarrow \mathbb{R}$ such that $f_{i}\left|U_{i} \cap U_{j}=f_{j}\right| U_{i} \cap U_{j}$.
We can find a unique $f: U \rightarrow \mathbb{R}$ such that $\left.f\right|_{U_{i}}=f_{i}$.
The above defines a sheaf!

Sheaf Theoretic Approach - Smooth Manifolds

Let M be a Hausdorff, second countable topological space.

Sheaf Theoretic Approach - Smooth Manifolds

Let M be a Hausdorff, second countable topological space.
Equip M with a sheaf of commutative algebras: $U \mapsto \mathcal{O}(U)$ subject to those two conditions (restrictions and gluing).

Sheaf Theoretic Approach - Smooth Manifolds

Let M be a Hausdorff, second countable topological space.
Equip M with a sheaf of commutative algebras: $U \mapsto \mathcal{O}(U)$ subject to those two conditions (restrictions and gluing).
(M, \mathcal{O}) is a smooth manifold if

- M is locally homeomorphic to \mathbb{R}^{n} as a topological space, and

Sheaf Theoretic Approach - Smooth Manifolds

Let M be a Hausdorff, second countable topological space.
Equip M with a sheaf of commutative algebras: $U \mapsto \mathcal{O}(U)$ subject to those two conditions (restrictions and gluing).
(M, \mathcal{O}) is a smooth manifold if

- M is locally homeomorphic to \mathbb{R}^{n} as a topological space, and
- \mathcal{O} is locally isomorphic (as a sheaf) to $\mathcal{C}_{\mathbb{R}^{n}}^{\infty}$ (the sheaf of smooth functions on \mathbb{R}^{n}).

Theorem

The two definitions of a smooth manifold are equivalent.
Showing atlas \rightarrow sheaf is easy.

Sheaf Theoretic Approach - Smooth Manifolds

Let M be a Hausdorff, second countable topological space.
Equip M with a sheaf of commutative algebras: $U \mapsto \mathcal{O}(U)$ subject to those two conditions (restrictions and gluing).
(M, \mathcal{O}) is a smooth manifold if

- M is locally homeomorphic to \mathbb{R}^{n} as a topological space, and
- \mathcal{O} is locally isomorphic (as a sheaf) to $\mathcal{C}_{\mathbb{R}^{n}}^{\infty}$ (the sheaf of smooth functions on \mathbb{R}^{n}).

Theorem

The two definitions of a smooth manifold are equivalent.
Showing atlas \rightarrow sheaf is easy. The topological homeomorphism gives us chart maps. We just need to check the transition functions are smooth.

Sheaf Theoretic Approach - Supermanifolds

We still have a Hausdorff, second countable topological space M.

Sheaf Theoretic Approach - Supermanifolds

We still have a Hausdorff, second countable topological space M.

Equip M with a sheaf of supercommutative algebras \mathcal{O}_{M}.

$$
U \mapsto \mathcal{O}(U)=\mathcal{O}(U)_{0} \oplus \mathcal{O}(U)_{1}
$$

Sheaf Theoretic Approach - Supermanifolds

We still have a Hausdorff, second countable topological space M.

Equip M with a sheaf of supercommutative algebras \mathcal{O}_{M}.

$$
U \mapsto \mathcal{O}(U)=\mathcal{O}(U)_{0} \oplus \mathcal{O}(U)_{1} .
$$

$\mathcal{M}=\left(M, \mathcal{O}_{M}\right)$ is a Berezin-Kostant-Leites supermanifold of dimension p, q if \mathcal{O}_{M} is locally isomorphic to $\mathcal{C}_{\mathbb{R} p}^{\infty} \otimes \bigwedge\left(\xi_{1}, \cdots, \xi_{q}\right)$ and M is locally homeomorphic to \mathbb{R}^{p}.

Theorem

The definition of Berezin-Kostant-Leites supermanifolds is equivalent to supermanifolds that use B_{k} (finite generators), the DeWitt topology (coarse, non-hausdorff), and H^{∞} functions.

Tying the Definitions Together

$$
G^{\infty} \text { supermanifold (Prod. Top) }
$$

