Supermanifolds - Who Cares?

Ben Kruger Maths Talks Week 5

University of Queensland

There are two families of subatomic particles:

- 1. bosons (force)
- 2. fermions (matter)

There are two families of subatomic particles:

- 1. bosons (force)
- 2. fermions (matter)

Bosons require commuting operators while fermions require anti-commuting operators.

There are two families of subatomic particles:

- 1. bosons (force)
- 2. fermions (matter)

Bosons require commuting operators while fermions require anti-commuting operators.

Locally, a supermanifold has both even and odd coordinates.

Mathematician	Year	Type of Supermanifold
Berezin	1987	Topological Manifold + Sheaf
DeWitt	1984	Set + Atlas
Leites	1980	Topological Manifold + Sheaf
Batchelor	1980	Set + Atlas
Rogers	1980	Set + Atlas
Kostant	1975	Topological Manifold + Sheaf

The goal of this project was to understand each definition and their connections.

Take k formal symbols, β_1, \cdots, β_k , and impose $\beta_i \beta_j = -\beta_j \beta_i$.

Take k formal symbols, β_1, \cdots, β_k , and impose $\beta_i \beta_j = -\beta_j \beta_i$.

Elements of the Grassman algebra,
$$B_k$$
, look like

$$X = X_0 + \sum_{i=1}^k X_i \beta_i + \sum_{i < j} X_{ij} \beta_i \beta_j + \dots +$$

$$+ \sum_{\mu_1 < \dots < \mu_{k-1}} X_{\mu_1 \dots \mu_{k-1}} \beta_{\mu_1} \dots \beta_{\mu_{k-1}} + X_{1 \dots k} \beta_1 \dots \beta_k.$$

Take k formal symbols, β_1, \dots, β_k , and impose $\beta_i \beta_j = -\beta_j \beta_i$.

Elements of the Grassman algebra,
$$B_k$$
, look like

$$X = X_0 + \sum_{i=1}^k X_i \beta_i + \sum_{i < j} X_{ij} \beta_i \beta_j + \dots +$$

$$+ \sum_{\mu_1 < \dots < \mu_{k-1}} X_{\mu_1 \dots \mu_{k-1}} \beta_{\mu_1} \dots \beta_{\mu_{k-1}} + X_{1 \dots k} \beta_1 \dots \beta_k.$$

Example

Take $X \in B_2$. X could be $1 + 2\beta_1 + 3\beta_2 + 4\beta_1\beta_2$.

• $B_{k,0}$ has elements with an even number of generators i.e $1 + 4\beta_1\beta_2$

- $B_{k,0}$ has elements with an even number of generators i.e $1 + 4\beta_1\beta_2$
- $B_{k,1}$ has elements with an odd number of generators i.e $2\beta_1 + 3\beta_2$

- $B_{k,0}$ has elements with an even number of generators i.e $1 + 4\beta_1\beta_2$
- $B_{k,1}$ has elements with an odd number of generators i.e $2\beta_1 + 3\beta_2$

Remark

At this point we see how a few different definitions can come about:

- $B_{k,0}$ has elements with an even number of generators i.e $1 + 4\beta_1\beta_2$
- $B_{k,1}$ has elements with an odd number of generators i.e $2\beta_1 + 3\beta_2$

Remark

At this point we see how a few different definitions can come about:

Rogers' supermanifold uses B_n or B_∞ (ℓ₁ with a certain multiplication defined.)

- $B_{k,0}$ has elements with an even number of generators i.e $1 + 4\beta_1\beta_2$
- $B_{k,1}$ has elements with an odd number of generators i.e $2\beta_1 + 3\beta_2$

Remark

At this point we see how a few different definitions can come about:

- Rogers' supermanifold uses B_n or B_∞ (ℓ₁ with a certain multiplication defined.)
- DeWitt's supermanifold uses W_∞ (a Grassman algebra with infinite generators.)

- $B_{k,0}$ has elements with an even number of generators i.e $1 + 4\beta_1\beta_2$
- $B_{k,1}$ has elements with an odd number of generators i.e $2\beta_1 + 3\beta_2$

Remark

At this point we see how a few different definitions can come about:

- Rogers' supermanifold uses B_n or B_∞ (ℓ₁ with a certain multiplication defined.)
- DeWitt's supermanifold uses W_∞ (a Grassman algebra with infinite generators.)
- Batchelor's supermanifold uses B_n but places a coarse topology on it.

Flat Superspace and the Body Map

Define flat superspace as $B_k^{m,n} := \underbrace{B_{k,0} \times \cdots \times B_{k,0}}_{m \text{ times}} \times \underbrace{B_{k,1} \times \cdots \times B_{k,1}}_{n \text{ times}}.$

Define flat superspace as $B_k^{m,n} := \underbrace{B_{k,0} \times \cdots \times B_{k,0}}_{\text{m times}} \times \underbrace{B_{k,1} \times \cdots \times B_{k,1}}_{\text{n times}}.$

An element of $B_k^{m,n}$ looks like $(x_1, \dots, x_m, \xi_1, \dots, \xi_n) = (x; \xi)$.

Define flat superspace as
$$B_k^{m,n} := \underbrace{B_{k,0} \times \cdots \times B_{k,0}}_{\text{m times}} \times \underbrace{B_{k,1} \times \cdots \times B_{k,1}}_{\text{n times}}.$$

An element of $B_k^{m,n}$ looks like $(x_1, \dots, x_m, \xi_1, \dots, \xi_n) = (x; \xi)$.

Example - **The Body Map** Take a supernumber $X = 1 + 2\beta_1 + 3\beta_2 + 4\beta_1\beta_2$ in B_2 . $\varepsilon : B_k \to \mathbb{R}$ is a linear map.

Here, $\varepsilon(X) = 1$.

Define flat superspace as
$$B_k^{m,n} := \underbrace{B_{k,0} \times \cdots \times B_{k,0}}_{\text{m times}} \times \underbrace{B_{k,1} \times \cdots \times B_{k,1}}_{\text{n times}}.$$

An element of $B_k^{m,n}$ looks like $(x_1, \dots, x_m, \xi_1, \dots, \xi_n) = (x; \xi)$.

Example - **The Body Map** Take a supernumber $X = 1 + 2\beta_1 + 3\beta_2 + 4\beta_1\beta_2$ in B_2 . $\varepsilon : B_k \to \mathbb{R}$ is a linear map. Here, $\varepsilon(X) = 1$.

The body map extends to $\varepsilon_{m,n} : B_k^{m,n} \to \mathbb{R}^m$ by $(x; \xi) \mapsto (\varepsilon(x_1), \cdots, \varepsilon(x_m)).$

We can place two interesting topologies on superspace:

• $U \subset B_L^{m,n}$ is open in the DeWitt topology if there is an open set $V \subset \mathbb{R}^m$ such that $\varepsilon_{m,n}^{-1}(V) = U$.

We can place two interesting topologies on superspace:

- $U \subset B_L^{m,n}$ is open in the DeWitt topology if there is an open set $V \subset \mathbb{R}^m$ such that $\varepsilon_{m,n}^{-1}(V) = U$.
- The product topology on B_L^{m,n} is the coarsest topology that ensures the projection maps onto B_{L,0} and B_{L,1} are continuous.

We can place two interesting topologies on superspace:

- $U \subset B_L^{m,n}$ is open in the DeWitt topology if there is an open set $V \subset \mathbb{R}^m$ such that $\varepsilon_{m,n}^{-1}(V) = U$.
- The product topology on B_L^{m,n} is the coarsest topology that ensures the projection maps onto B_{L,0} and B_{L,1} are continuous.

The DeWitt topology is not even Hausdorff! Yet somehow it still makes the most sense on these spaces...

What does it mean for $f: B_k^{m,n} \to B_k$ to be smooth on $U \subset B_k^{m,n}$?

What does it mean for $f: B_k^{m,n} \to B_k$ to be smooth on $U \subset B_k^{m,n}$?

Define $f_{\mu} : \varepsilon_{m,n}(U) \subset \mathbb{R}^m \to B_k$, to be smooth if the coefficient functions are smooth.

What does it mean for $f: B_k^{m,n} \to B_k$ to be smooth on $U \subset B_k^{m,n}$?

Define $f_{\mu} : \varepsilon_{m,n}(U) \subset \mathbb{R}^m \to B_k$, to be smooth if the coefficient functions are smooth.

We want these functions to have a domain in $B_k^{m,n}$...

What does it mean for $f: B_k^{m,n} \to B_k$ to be smooth on $U \subset B_k^{m,n}$?

Define $f_{\mu} : \varepsilon_{m,n}(U) \subset \mathbb{R}^m \to B_k$, to be smooth if the coefficient functions are smooth.

We want these functions to have a domain in $B_k^{m,n}$...

 \rightsquigarrow Grassman analytic continuation $\widehat{f}_{\mu}(x;\xi)$

What does it mean for $f: B_k^{m,n} \to B_k$ to be smooth on $U \subset B_k^{m,n}$?

Define $f_{\mu} : \varepsilon_{m,n}(U) \subset \mathbb{R}^m \to B_k$, to be smooth if the coefficient functions are smooth.

We want these functions to have a domain in $B_k^{m,n}$...

 \rightsquigarrow Grassman analytic continuation $\widehat{f}_{\mu}(x;\xi)$

We say f is G^{∞} if there exist smooth $f_{\mu}: \varepsilon_{m,n}(U) \to B_k$ such that

$$f(x;\xi) = \sum_{\mu} \widehat{f_{\mu}}(x;\xi) \xi_{\mu}.$$

Here $\mu = (\mu_1, \cdots, \mu_l)$ such that $1 \le \mu_1 < \cdots < \mu_l \le k$.

Example

Define $f: B_2^{1,1} \to B_2$ by $(x,\xi) \mapsto (1+2\beta_1+3\beta_2+4\beta_1\beta_2)+\xi$.

Define $f_0(\varepsilon(x)) = 1 + 2\beta_1 + 3\beta_2 + 4\beta_1\beta_2$, $f_1(\varepsilon(x)) = 1$.

Extending the domain of f_0 and f_1 , we find

$$f(x;\xi) = \widehat{f}_0(x,\xi) + \widehat{f}_1(x,\xi)\xi$$

Example

Define $f : B_2^{1,1} \to B_2$ by $(x,\xi) \mapsto (1+2\beta_1+3\beta_2+4\beta_1\beta_2)+\xi$.

Define $f_0(\varepsilon(x)) = 1 + 2\beta_1 + 3\beta_2 + 4\beta_1\beta_2$, $f_1(\varepsilon(x)) = 1$.

Extending the domain of f_0 and f_1 , we find

$$f(x;\xi) = \widehat{f}_0(x,\xi) + \widehat{f}_1(x,\xi)\xi$$

We can also have an H^{∞} function, where the f_{μ} map into \mathbb{R} not B_k .

An (m, n)-dimensional G^{∞} supermanifold is a topological space M equipped with chart maps, $\varphi : U \to B_k^{m,n}$, taking open sets into flat superspace.

An (m, n)-dimensional G^{∞} supermanifold is a topological space M equipped with chart maps, $\varphi : U \to B_k^{m,n}$, taking open sets into flat superspace.

In analogy to a smooth manifold, we want the transition functions $\psi\circ\varphi^{-1}$ to be $G^\infty.$

In analogy to a smooth manifold, we want the transition functions $\psi\circ\varphi^{-1}$ to be $G^\infty.$

Examples

Flat superspace B^{m,n}_k

In analogy to a smooth manifold, we want the transition functions $\psi\circ\varphi^{-1}$ to be $G^\infty.$

Examples

- Flat superspace B^{m,n}_k
- Every smooth manifold take n = 0

In analogy to a smooth manifold, we want the transition functions $\psi\circ\varphi^{-1}$ to be $G^\infty.$

Examples

- Flat superspace B^{m,n}_k
- Every smooth manifold take n = 0
- Super real projective space SℝP^{m,n}

In analogy to a smooth manifold, we want the transition functions $\psi\circ\varphi^{-1}$ to be $G^\infty.$

Examples

- Flat superspace B^{m,n}_k
- Every smooth manifold take n = 0
- Super real projective space SRP^{m,n}
- Lie supergroups general linear supergroup GL(m|n), special linear supergroup SL(m|n), orthosymplectic supergroup OSP(m|n).

• Given $U \subset V \subset \mathbb{R}^n$, we can restrict functions:

 $f: V \to \mathbb{R} \rightsquigarrow f|_U: U \to \mathbb{R}.$

• Given $U \subset V \subset \mathbb{R}^n$, we can restrict functions:

$$f: V \to \mathbb{R} \rightsquigarrow f|_U: U \to \mathbb{R}.$$

Restriction is transitive and restricting a function from a set to itself does nothing.

• Given $U \subset V \subset \mathbb{R}^n$, we can restrict functions:

$$f: V \to \mathbb{R} \rightsquigarrow f|_U: U \to \mathbb{R}.$$

Restriction is transitive and restricting a function from a set to itself does nothing.

• Take a covering $\{U_i\}$ of U, and a family $\{f_i\}$ with $f_i : U_i \to \mathbb{R}$ such that $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$. We can find a unique $f : U \to \mathbb{R}$ such that $f|_{U_i} = f_i$.

• Given $U \subset V \subset \mathbb{R}^n$, we can restrict functions:

$$f: V \to \mathbb{R} \rightsquigarrow f|_U: U \to \mathbb{R}.$$

Restriction is transitive and restricting a function from a set to itself does nothing.

• Take a covering $\{U_i\}$ of U, and a family $\{f_i\}$ with $f_i : U_i \to \mathbb{R}$ such that $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$. We can find a unique $f : U \to \mathbb{R}$ such that $f|_{U_i} = f_i$.

The above defines a sheaf!

Sheaf Theoretic Approach - Smooth Manifolds

Let M be a Hausdorff, second countable topological space.

Equip M with a sheaf of commutative algebras: $U \mapsto \mathcal{O}(U)$ subject to those two conditions (restrictions and gluing).

Equip M with a sheaf of commutative algebras: $U \mapsto \mathcal{O}(U)$ subject to those two conditions (restrictions and gluing).

 (M, \mathcal{O}) is a smooth manifold if

• M is locally homeomorphic to \mathbb{R}^n as a topological space, and

Equip M with a sheaf of commutative algebras: $U \mapsto \mathcal{O}(U)$ subject to those two conditions (restrictions and gluing).

 (M, \mathcal{O}) is a smooth manifold if

- M is locally homeomorphic to \mathbb{R}^n as a topological space, and
- *O* is locally isomorphic (as a sheaf) to C[∞]_{ℝⁿ} (the sheaf of smooth functions on ℝⁿ).

Theorem

The two definitions of a smooth manifold are equivalent.

Showing atlas \rightarrow sheaf is easy.

Equip M with a sheaf of commutative algebras: $U \mapsto \mathcal{O}(U)$ subject to those two conditions (restrictions and gluing).

 (M, \mathcal{O}) is a smooth manifold if

- M is locally homeomorphic to \mathbb{R}^n as a topological space, and
- *O* is locally isomorphic (as a sheaf) to C[∞]_{ℝⁿ} (the sheaf of smooth functions on ℝⁿ).

Theorem

The two definitions of a smooth manifold are equivalent.

Showing atlas \rightarrow sheaf is easy. The topological homeomorphism gives us chart maps. We just need to check the transition functions are smooth.

Sheaf Theoretic Approach - Supermanifolds

We still have a Hausdorff, second countable topological space M.

Sheaf Theoretic Approach - Supermanifolds

We still have a Hausdorff, second countable topological space M.

Equip M with a sheaf of supercommutative algebras \mathcal{O}_M .

 $U \mapsto \mathcal{O}(U) = \mathcal{O}(U)_0 \oplus \mathcal{O}(U)_1.$

We still have a Hausdorff, second countable topological space M.

Equip M with a sheaf of supercommutative algebras \mathcal{O}_M .

$$U \mapsto \mathcal{O}(U) = \mathcal{O}(U)_0 \oplus \mathcal{O}(U)_1.$$

 $\mathcal{M} = (M, \mathcal{O}_M)$ is a Berezin-Kostant-Leites supermanifold of dimension p, q if \mathcal{O}_M is locally isomorphic to $\mathcal{C}_{\mathbb{R}^p}^{\infty} \otimes \bigwedge (\xi_1, \cdots, \xi_q)$ and M is locally homeomorphic to \mathbb{R}^p .

Theorem

The definition of Berezin-Kostant-Leites supermanifolds is equivalent to supermanifolds that use B_k (finite generators), the DeWitt topology (coarse, non-hausdorff), and H^{∞} functions.

Tying the Definitions Together

