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Inspiration

The trouble with integers is that we have examined only
the very small ones. Maybe all the exciting stuff happens
at really big numbers, ones we can’t even begin to think
about in any very definite way.
(Ronald Graham)

It wasn’t infinity in fact. Infinity itself looks flat and
uninteresting. […] it was just very very very big, so
big that it gave the impression of infinity far better than
infinity itself.
(Douglas Adams, A Hitchhiker’s Gudie to the Galaxy)
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The Rules

Numbers
Numbers are natural numbers.

Mathematics
Numbers should be precisely specified.
“Precisely specified” is not precisely specified.

Bad “Numbers”
▶ A zillion.
▶ Infinity.
▶ The biggest number in this talk, plus one.
▶ The biggest number describable in ten English words, plus

one.
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How Big Do Numbers Get?

As big as you like. More precisely,

Theorem
There is no biggest number.

Proof.
By contradiction. Suppose that 𝑁 is the biggest number. Then
𝑁 + 1 is also a number, but 𝑁 + 1 > 𝑁. Contradiction.

Most Numbers Are Big
For a given number 𝑁, there are finitely many numbers smaller
than 𝑁, and infinitely many numbers bigger than 𝑁.

So…
In the Big Number Game, you can never win. You can never
even get close. Let’s get started.
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Let’s Go Faster

How About…
646356798734978347943593245.

Bigger:
700000000000000000000000000. I.e., 7 ⋅ 1026.

Bigger:
1027.

Lesson
Decimal notation isn’t important. Exponentiation is.
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Small Big Numbers

Some numbers have “practical applications”.
▶ hundred: 102

▶ thousand: 103

▶ million: 106

▶ billion: 109

▶ trillion: 1012

▶ sextillion (hehe): 1021

▶ googol: 10100

▶ googolplex: 1010100



Small Big Numbers

Some numbers have “practical applications”.

▶ hundred: 102

▶ thousand: 103

▶ million: 106

▶ billion: 109

▶ trillion: 1012

▶ sextillion (hehe): 1021

▶ googol: 10100

▶ googolplex: 1010100



Small Big Numbers

Some numbers have “practical applications”.
▶ hundred: 102

▶ thousand: 103

▶ million: 106

▶ billion: 109

▶ trillion: 1012

▶ sextillion (hehe): 1021

▶ googol: 10100

▶ googolplex: 1010100



Small Big Numbers

Some numbers have “practical applications”.
▶ hundred: 102

▶ thousand: 103

▶ million: 106

▶ billion: 109

▶ trillion: 1012

▶ sextillion (hehe): 1021

▶ googol: 10100

▶ googolplex: 1010100



Small Big Numbers

Some numbers have “practical applications”.
▶ hundred: 102

▶ thousand: 103

▶ million: 106

▶ billion: 109

▶ trillion: 1012

▶ sextillion (hehe): 1021

▶ googol: 10100

▶ googolplex: 1010100



Small Big Numbers

Some numbers have “practical applications”.
▶ hundred: 102

▶ thousand: 103

▶ million: 106

▶ billion: 109

▶ trillion: 1012

▶ sextillion (hehe): 1021

▶ googol: 10100

▶ googolplex: 1010100



Small Big Numbers

Some numbers have “practical applications”.
▶ hundred: 102

▶ thousand: 103

▶ million: 106

▶ billion: 109

▶ trillion: 1012

▶ sextillion (hehe): 1021

▶ googol: 10100

▶ googolplex: 1010100



Small Big Numbers

Some numbers have “practical applications”.
▶ hundred: 102

▶ thousand: 103

▶ million: 106

▶ billion: 109

▶ trillion: 1012

▶ sextillion (hehe): 1021

▶ googol: 10100

▶ googolplex: 1010100



Small Big Numbers

Some numbers have “practical applications”.
▶ hundred: 102

▶ thousand: 103

▶ million: 106

▶ billion: 109

▶ trillion: 1012

▶ sextillion (hehe): 1021

▶ googol: 10100

▶ googolplex: 1010100



Small Big Numbers

Some numbers have “practical applications”.
▶ hundred: 102

▶ thousand: 103

▶ million: 106

▶ billion: 109

▶ trillion: 1012

▶ sextillion (hehe): 1021

▶ googol: 10100

▶ googolplex: 1010100



Exponentiation Example 1

Archimedes was an early pioneer of us-
ing exponentiation to create big num-
bers.

He came up with the numbers:
▶ 1063

▶ ((108)(108))(108) = 108⋅1016
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Exponentiation Example 2

Definitions

𝜋(𝑥) ≔ |ℙ ∩ (−∞, 𝑥]| li(𝑥) ≔ �
𝑥

0

1
ln 𝑥

d𝑥

Skewes’s Number
For all small numbers 𝑥 ≥ 2, it appears that 𝜋(𝑥) ≤ li(𝑥).
However, Littlewood proved that the sign of 𝜋(𝑥) − li(𝑥) changes
infinitely often.
An early upper bound for the smallest such 𝑥with 𝜋(𝑥) > li(𝑥)
was given by Skewes:

𝑒𝑒𝑒
𝑒7.705

< 101010
964
.
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Tetration

Recusive Definitions

𝑛 ⋅ 0 ≔ 0, 𝑛 ⋅ (𝑚 + 1) ≔ 𝑛 + (𝑛 ⋅ 𝑚);
𝑛0 ≔ 1, 𝑛𝑚+1 ≔ 𝑛 ⋅ (𝑛𝑚).

Let’s Go Further

0𝑛 ≔ 1, 𝑚+1𝑛 ≔ 𝑛𝑚𝑛.

Example

1010100 < 101010
10
= 410.
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Consider
333. Since

33 = 333 = 327 = 7625597484987,

we have
333 = 76255974849873.

This number is in the same “size class” as its logarithm.
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Knuth Hyperoperators
Arrows
Exponentiation and tetration are denoted by arrows:

𝑛 ↑ 𝑚 = 𝑛𝑚 𝑛 ↑↑ 𝑚 = 𝑚𝑛.

Pentation
Iterated tetration, pentation, can be written thusly:

3 ↑↑↑ 4 = 3 ↑↑ (3 ↑↑ (3 ↑↑ 3)) = number from last slide3

Hexation

6 ↑↑↑↑ 9
= 6 ↑↑↑ (6 ↑↑↑ (6 ↑↑↑ (6 ↑↑↑ (6 ↑↑↑ (6 ↑↑↑ (6 ↑↑↑ (6 ↑↑↑ 6)))))))
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Knuth Hyperoperators

The number of arrows indicates the number of “levels of
recursion”.

Formal Definition

𝑛 ↑0 𝑚 ≔ 𝑛𝑚 𝑛 ↑𝑘+1 0 ≔ 1 𝑛 ↑𝑘+1 (𝑚+1) ≔ 𝑛 ↑𝑘 (𝑛 ↑𝑘+1 𝑚)

Comment
It’s more common to start defining these at 1, but I found a way
to start at 0.
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Graham’s Number

Setup
The Graham–Rothschild Theorem implies that there exists a
number 𝑛 such that any 2-colouring of the edges of the complete
graph on the vertices of the 𝑛-dimensional hypercube contains a
monochromatic coplanar 𝐾4. Graham’s number is an upper
bound for the least such 𝑛.

Definition
Define 𝑔0 ≔ 4, 𝑔𝑛+1 ≔ 3 ↑𝑔𝑛 3. Then Graham’s Number is 𝑔64.

Lower bound
The best known lower bound for this problem is 13.
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Conway Chained Arrows

Definition

() ≔ 1 (𝑎) ≔ 𝑎 (𝑎 → 𝑏) ≔ 𝑎𝑏

(𝑋 → 1) ≔ 𝑋 (𝑋 → 1 → 𝑎) ≔ 𝑋
(𝑋 → (𝑎 + 1) → (𝑏 + 1)) ≔ (𝑋 → (𝑋 → 𝑎 → (𝑏 + 1)) → 𝑏)

Relation to Knuth Arrows

(𝑎 → 𝑏 → 𝑐) = 𝑎 ↑𝑐 𝑏

Hang on…
Is this notation even well-defined? Yes, but the easiest way to
show this uses an idea we have yet to introduce.
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Conway Chained Arrow Example 1

(3 → 3 → 1 → 2) = (3 → 3) = 33 = 27
(3 → 3 → (𝑛 + 1) → 2) = (3 → 3 → (3 → 3 → 𝑛 → 2) → 1)

= 3 ↑(3→3→𝑛→2) 3

Comparison with Graham’s Number

(3 → 3 → 64 → 2) < 𝑔64 < (3 → 3 → 65 → 2)
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Conway Chained Arrow Example 2

(3 → 3 → 2 → 3) = (3 → 3 → (3 → 3 → 1 → 3) → 2)
= (3 → 3 → 27 → 2)

(3 → 3 → 3 → 3) = (3 → 3 → (3 → 3 → 2 → 3) → 2)
(3 → 3 → 2 → 4) = (3 → 3 → 27 → 3)
(3 → 3 → 3 → 4) = (3 → 3 → (3 → 3 → 2 → 4) → 3)

(6 → 6 → 6 → 6 → 6 → 6 → 6 → 6 → 6) = (a big number)
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Other Notatations

▶ Bower’s Eploding Array Notation (BEAF)

▶ Bird’s Array Notation
▶ Extended Cascading-E Notation

Complaint
These notations are rather ad hoc. Is there a more systematic way
to generate big numbers?
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“The” Fast-Growing Hierarchy

The Fast-Growing Hierarchy is a sequence of functions
𝑓𝛼 ∶ ℕ → ℕ indexed by ordinals.

The first few such functions are defined inductively:

𝑓0(𝑛) ≔ 𝑛 + 1;
𝑓𝑚+1(𝑛) ≔ 𝑓𝑛𝑚(𝑛).

In general, 𝑓𝑛 is comparable with 𝑛 ↦ 𝑛 ↑𝑛 𝑛.
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Fast-Growing Hierarchy Examples

𝑓1(𝑛) = 𝑓𝑛0 (𝑛) = 2𝑛
𝑓2(𝑛) = 𝑓𝑛1 (𝑛) = 2𝑛𝑛 > 2 ↑ 𝑛

𝑓3(3) = 𝑓2(𝑓2(𝑓2(3))) = 22
2332332233233

> 2 ↑↑ 3
𝑓𝑚+1(𝑛) > 2 ↑𝑚 𝑛

If FGH doesn’t get us any faster speed than Knuth arrows, why
bother? Because not all ordinals are finite.
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Ordinals (Informal)

Comment
Despite only attempting to make large finite numbers, we now
have occasion to introduce infinity, since it is useful.

Counting
Numbers are used for counting. Ordinals are an extension of
numbers which enable you to count past infinity.

0, 1, 2, 3, … ,𝜔,𝜔 + 1,… ,𝜔2, 𝜔2 + 1,… ,𝜔3, 𝜔4,… ,𝜔2, …

Important Property
There are no infinite strictly-decreasing sequences of ordinals
(i.e., any nonempty set of ordinals has a least element).
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Fundamental Sequences

Successor and Limit Ordinals
An ordinal 𝛼 is called a successor ordinal when there exists an
ordinal 𝛽 such that 𝛼 = 𝛽 + 1. An ordinal is called a limit ordinal
when it is not a successor ordinal.

Fundamental Sequences
To each limit ordinal 𝛼 is assigned a fundamental sequence: a
sequence of ordinals which “approach” 𝛼.

𝜔 ∶ 0, 1, 2, …
𝜔2 ∶ 𝜔,𝜔 + 1, 𝜔 + 2,…
𝜔2 ∶ 𝜔, 𝜔2, 𝜔3,…
𝜔𝜔 ∶ 1, 𝜔, 𝜔2, 𝜔3, …
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FGH for Limit Ordinals

To the other two rules of the FGH, we add a third rule:

𝑓𝛼(𝑛) = 𝑓𝛼[𝑛](𝑛) 𝛼 a limit ordinal

Example

𝑓𝜔+1(3) = 𝑓𝜔(3) = 𝑓𝜔(𝑓𝜔(𝑓3(3))) > 𝑓𝜔(𝑓𝜔(2 ↑↑ 3))
= 𝑓𝜔(𝑓𝜔(65536)) = 𝑓𝜔(𝑓65536(65536)) < 𝑓𝜔(2 ↑65535 65536)

< 2 ↑2↑6553565536−1 (2 ↑65535 65536)
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Comparison with Previous Numbers

Graham’s Number
The function 𝑓𝜔+1 is comparable with Graham’s 𝑔. We have
𝑓𝜔+1(64) > 𝑔64.

Conway’s Chained Arrows
The function 𝑓𝜔𝑛 is compariable to Conway chained arrow
notation with 𝑛 arrows. The function 𝑓𝜔2 diagonalizes over
Conway chained arrow notation. Non-coincidentally, 𝜔2 is used
in the most natural proof that the notation is well-defined.

Transfinite Recursion on 𝜔2

For the arrow configuration 𝑋 → 𝑎 → 𝑏, assign the ordinal
𝜔𝑏 + 𝑎. Then the Conway notation is well-defined, since there
are no infinite strictly decreasing sequences of ordinals.
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Higher FGH Example

All previous notation got us merely up to 𝜔2. We have much
greater power available to use now.

Example

𝑓𝜔𝜔(4)
= 𝑓𝜔4(4) = 𝑓𝜔34(4) = 𝑓𝜔33+𝜔24(4) = 𝑓𝜔33+𝜔23+4𝜔(4) = 𝑓𝜔33+𝜔23+3𝜔+4(4)
= 𝑓𝜔33+𝜔23+3𝜔+3(𝑓𝜔33+𝜔23+3𝜔+3(𝑓𝜔33+𝜔23+3𝜔+3(𝑓𝜔33+𝜔23+3𝜔+3(4))))

Comment
This number is big.
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Ordinals past 𝜔𝜔

To get large finite numbers, we now need large (countable)
ordinals (and fundamental sequences for them).

The sequence continues…

… ,𝜔𝜔, 𝜔𝜔 + 1,… ,𝜔𝜔2,… ,𝜔𝜔3,… ,𝜔𝜔+1, … , 𝜔𝜔+12,

… ,𝜔𝜔+2, … , 𝜔𝜔2, … , 𝜔𝜔2, … , 𝜔𝜔2+1, … , 𝜔𝜔22, … , 𝜔𝜔3,

… , 𝜔𝜔𝜔, … , 𝜔𝜔𝜔𝜔 , … , 𝜔𝜔𝜔𝜔
𝜔

, …

𝜀0
The supremum of this sequence is called 𝜀0. This is the first fixed
point of 𝛼 → 𝜔𝛼. It is associated with the fundamental sequence:

1, 𝜔, 𝜔𝜔, 𝜔𝜔𝜔, 𝜔𝜔𝜔𝜔 , …
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Ordinal Representations

Ordinals less than 𝜔𝜔 can be represented as finite sequences of
numbers.

Ordinals less than 𝜀0 can be represented as finite trees of
numbers.
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The Goodstein Function

Hereditary Base-𝑛 Notation
Write a number in base-𝑛. Then write the exponents in base-𝑛
notation. Continue. Example:

69 = 26 + 22 + 21 = 222
1+21 + 221 + 21

Next Step
Change the 2’s to 3’s, and subtract 1. So on:

333
1+31 + 331 + 31 − 1 = 333

1+31 + 331 + 2

444
1+41 + 441 + 2 − 1 = 444

1+41 + 441 + 1

= 555
1+51 + 551 + 1 − 1 = 555

1+51 + 551
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The Goodstein Function, Continued

Goodstein’s Theorem
For any number 𝑛, the sequence contructed in the previous slide
will always eventually reach 0.

The Goodstein Function 𝒢
For any number 𝑛, 𝒢 (𝑛) is defined to be the number of steps
required until the above sequence (starting with 𝑛) reaches 0.

Note
The function 𝒢 has growth rate ∼ 𝑓𝜀0. This can be understood as
due to the “tree-like” structure of hereditary base-𝑛 notation.



Ordinals Past 𝜀0
Other Fixed Points
The function 𝛼 ↦ 𝜔𝛼 is a normal function, so it has arbitrarily
many fixed points (see MATH3306). The ordinal 𝜀0 is the first
such fixed point. The next is 𝜀1. A typical fundamental sequence
for this is

𝜀0 + 1,𝜔𝜀0+1, 𝜔𝜔𝜀0+1, …

Note that 𝑤𝜀0 = 𝜀0. Fundamental sequences for other
“𝜀-numbers” can be constructed similarly.

𝜀 fixed points
The function 𝛼 → 𝜀𝛼 is also normal, so it to has arbitrarily many
fixed points. The first such fixed point is denoted by 𝜁0, with
fundamental sequence

0, 𝜀0, 𝜀𝜀0, 𝜀𝜀𝜀0 , … ,

Of course, we can then define 𝜁1. And 𝜁𝜁𝜁,….
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The Veblen Hierarchy

We have the 𝜀 ordinals, the 𝜁 ordinals, etc. This can be seen as
the start of another infinite hierarchy.

The Veblen Function
Roughly, for ordinals 𝛼 and 𝛽, 𝜑𝛼+1(𝛽) is defined to be the 𝑏𝑒𝑡𝑎-th
fixed point of 𝜑𝛼.

The Fefferman–Schütte Ordinal
This is the first ordinal 𝛼 such that 𝜑𝛼(0) = 𝛼. In other words, it
enables the Veblen function to “eat itself”. It is denoted Γ0.

Higher Countable Ordinals
One can define higher countable ordinals, with correspondingly
more complicated notations and fundamental sequences.
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more complicated notations and fundamental sequences.



Proof Theoretic Ordinals

Warning
This content will be more vague than usual. It may not be
accurate.

Inserted After Talk…
(In fact, the following slides were not accurate, so I’ve taken the
liberty of removing them.)
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