How Big Do Numbers Get?

William Barnett

Inspiration

The trouble with integers is that we have examined only the very small ones. Maybe all the exciting stuff happens at really big numbers, ones we can't even begin to think about in any very definite way.
(Ronald Graham)

Inspiration

The trouble with integers is that we have examined only the very small ones. Maybe all the exciting stuff happens at really big numbers, ones we can't even begin to think about in any very definite way.
(Ronald Graham)
It wasn't infinity in fact. Infinity itself looks flat and uninteresting. [...] it was just very very very big, so big that it gave the impression of infinity far better than infinity itself.
(Douglas Adams, A Hitchhiker's Gudie to the Galaxy)

Introduction

Introduction

About Me
I am Will.

Introduction

About Me
I am Will.

Aim of This Talk
To help you to appreciate how big numbers get.

Introduction

About Me
I am Will.

Aim of This Talk
To help you to appreciate how big numbers get.
Rigour Level
Generally low.

The Rules

The Rules

Numbers
Numbers are natural numbers.

The Rules

Numbers
Numbers are natural numbers.
Mathematics
Numbers should be precisely specified.

The Rules

Numbers
Numbers are natural numbers.
Mathematics
Numbers should be precisely specified.
"Precisely specified" is not precisely specified.

The Rules

Numbers
Numbers are natural numbers.
Mathematics
Numbers should be precisely specified.
"Precisely specified" is not precisely specified.
Bad "Numbers"

- A zillion.

The Rules

Numbers
Numbers are natural numbers.
Mathematics
Numbers should be precisely specified.
"Precisely specified" is not precisely specified.
Bad "Numbers"

- A zillion.
- Infinity.

The Rules

Numbers
Numbers are natural numbers.
Mathematics
Numbers should be precisely specified.
"Precisely specified" is not precisely specified.
Bad "Numbers"

- A zillion.
> Infinity.
- The biggest number in this talk, plus one.

The Rules

Numbers
Numbers are natural numbers.
Mathematics
Numbers should be precisely specified.
"Precisely specified" is not precisely specified.
Bad "Numbers"

- A zillion.
- Infinity.
- The biggest number in this talk, plus one.
- The biggest number describable in ten English words, plus one.

How Big Do Numbers Get?

How Big Do Numbers Get?

As big as you like.

How Big Do Numbers Get?

As big as you like. More precisely,
Theorem
There is no biggest number.

How Big Do Numbers Get?

As big as you like. More precisely,
Theorem
There is no biggest number.
Proof.
By contradiction. Suppose that N is the biggest number. Then $N+1$ is also a number, but $N+1>N$. Contradiction.

How Big Do Numbers Get?

As big as you like. More precisely,
Theorem
There is no biggest number.
Proof.
By contradiction. Suppose that N is the biggest number. Then $N+1$ is also a number, but $N+1>N$. Contradiction.

Most Numbers Are Big
For a given number N, there are finitely many numbers smaller than N, and infinitely many numbers bigger than N.

How Big Do Numbers Get?

As big as you like. More precisely,
Theorem
There is no biggest number.
Proof.
By contradiction. Suppose that N is the biggest number. Then $N+1$ is also a number, but $N+1>N$. Contradiction.

Most Numbers Are Big
For a given number N, there are finitely many numbers smaller than N, and infinitely many numbers bigger than N.

So...
In the Big Number Game, you can never win. You can never even get close.

How Big Do Numbers Get?

As big as you like. More precisely,
Theorem
There is no biggest number.

Proof.

By contradiction. Suppose that N is the biggest number. Then $N+1$ is also a number, but $N+1>N$. Contradiction.

Most Numbers Are Big
For a given number N, there are finitely many numbers smaller than N, and infinitely many numbers bigger than N.

So...
In the Big Number Game, you can never win. You can never even get close. Let's get started.

The Beginning

The Beginning
>0

The Beginning
>0

- 1

The Beginning

- 0
> 1
- 2

The Beginning

- 0
> 1
- 2
- 3

The Beginning

- 0
> 1
>2
- 3
- 4

The Beginning

- 0
>1
- 2
- 3
- 4
- 5

The Beginning
>0

- 1
>2
- 3
- 4
- 5
- 6

The Beginning

$\triangleright 0$

- 1
$\triangleright 2$
- 3
- 4
- 5
- 6
>7

The Beginning

$\triangleright 0$

- 1
- 2
- 3
- 4
- 5
- 6
>7
- 8

The Beginning

$\triangleright 0$

- 1
- 2
- 3
- 4
- 5
- 6
>7
- 8
$\triangleright 9$

The Beginning

$\triangleright 0$

- 1
- 2
- 3
- 4
- 5
- 6
>7
- 8
- 9
- 10

The Beginning

$\triangleright 0$

- 1
- 2
- 3
- 4
- 5
- 6
>7
- 8
- 9
- 10
- And so on.

Let's Go Faster

Let's Go Faster

How About...
646356798734978347943593245.

Let's Go Faster

How About...
646356798734978347943593245.

Bigger:
700000000000000000000000000.

Let's Go Faster

How About...
646356798734978347943593245.

Bigger:
700000000000000000000000000 . I.e., $7 \cdot 10^{26}$.

Let's Go Faster

How About...
646356798734978347943593245.

Bigger:
700000000000000000000000000 . I.e., $7 \cdot 10^{26}$.
Bigger:
10^{27}.

Let's Go Faster

How About...
646356798734978347943593245.

Bigger:
700000000000000000000000000 . I.e., $7 \cdot 10^{26}$.
Bigger:
10^{27}.
Lesson
Decimal notation isn't important. Exponentiation is.

Small Big Numbers

Small Big Numbers

Some numbers have "practical applications".

Small Big Numbers

Some numbers have "practical applications".

- hundred: 10^{2}

Small Big Numbers

Some numbers have "practical applications".
$>$ hundred: 10^{2}
thousand: 10^{3}

Small Big Numbers

Some numbers have "practical applications".
$>$ hundred: 10^{2}
thousand: 10^{3}
$>$ million: 10^{6}

Small Big Numbers

Some numbers have "practical applications".
$>$ hundred: 10^{2}
thousand: 10^{3}
$>$ million: 10^{6}

- billion: 10^{9}

Small Big Numbers

Some numbers have "practical applications".

- hundred: 10^{2}
thousand: 10^{3}
- million: 10^{6}
$>$ billion: 10^{9}
$>$ trillion: 10^{12}

Small Big Numbers

Some numbers have "practical applications".

- hundred: 10^{2}
thousand: 10^{3}
$>$ million: 10^{6}
- billion: 10^{9}
$>$ trillion: 10^{12}
- sextillion (hehe): 10^{21}

Small Big Numbers

Some numbers have "practical applications".

- hundred: 10^{2}
thousand: 10^{3}
$>$ million: 10^{6}
- billion: 10^{9}
$>$ trillion: 10^{12}
> sextillion (hehe): 10^{21}
$>$ googol: 10^{100}

Small Big Numbers

Some numbers have "practical applications".

- hundred: 10^{2}
thousand: 10^{3}
$>$ million: 10^{6}
- billion: 10^{9}
$>$ trillion: 10^{12}
> sextillion (hehe): 10^{21}
- googol: 10^{100}
\rightarrow googolplex: $10^{10^{100}}$

Exponentiation Example 1

Archimedes was an early pioneer of using exponentiation to create big numbers.

Exponentiation Example 1

Archimedes was an early pioneer of using exponentiation to create big numbers.
He came up with the numbers:
-10^{63}

Exponentiation Example 1

Archimedes was an early pioneer of using exponentiation to create big numbers.
He came up with the numbers:
$\rightarrow 10^{63}$
$>\left(\left(10^{8}\right)^{\left(10^{8}\right)}\right)^{\left(10^{8}\right)}=10^{8 \cdot 10^{16}}$

Exponentiation Example 2

Definitions

$$
\pi(x):=|\mathbb{P} \cap(-\infty, x]| \quad \operatorname{li}(x):=\int_{0}^{x} \frac{1}{\ln x} \mathrm{~d} x
$$

Exponentiation Example 2

Definitions

$$
\pi(x):=|\mathbb{P} \cap(-\infty, x]| \quad \operatorname{li}(x):=\int_{0}^{x} \frac{1}{\ln x} \mathrm{~d} x
$$

Skewes's Number
For all small numbers $x \geq 2$, it appears that $\pi(x) \leq \operatorname{li}(x)$.
However, Littlewood proved that the sign of $\pi(x)-\operatorname{li}(x)$ changes infinitely often.

Exponentiation Example 2

Definitions

$$
\pi(x):=|\mathbb{P} \cap(-\infty, x]| \quad \operatorname{li}(x):=\int_{0}^{x} \frac{1}{\ln x} \mathrm{~d} x
$$

Skewes's Number
For all small numbers $x \geq 2$, it appears that $\pi(x) \leq \operatorname{li}(x)$.
However, Littlewood proved that the sign of $\pi(x)-\operatorname{li}(x)$ changes infinitely often.
An early upper bound for the smallest such x with $\pi(x)>\operatorname{li}(x)$ was given by Skewes:

$$
e^{e^{e^{e^{7.705}}}}<10^{10^{10^{964}}}
$$

Tetration

Recusive Definitions

$$
\begin{array}{rlrl}
n \cdot 0 & :=0, & n \cdot(m+1) & :=n+(n \cdot m) ; \\
n^{0}:=1, & n^{m+1} & :=n \cdot\left(n^{m}\right) .
\end{array}
$$

Tetration

Recusive Definitions

$$
\begin{aligned}
n \cdot 0 & :=0, & n \cdot(m+1) & :=n+(n \cdot m) ; \\
n^{0} & :=1, & n^{m+1} & :=n \cdot\left(n^{m}\right) .
\end{aligned}
$$

Let's Go Further

$$
0_{n}:=1, \quad{ }^{m+1} n:=n^{m_{n}} .
$$

Tetration

Recusive Definitions

$$
\begin{aligned}
n \cdot 0 & :=0, & n \cdot(m+1) & :=n+(n \cdot m) ; \\
n^{0} & :=1, & n^{m+1} & :=n \cdot\left(n^{m}\right) .
\end{aligned}
$$

Let's Go Further

$$
{ }^{0} n:=1, \quad{ }^{m+1} n:=n^{m} n .
$$

Example

$$
10^{10^{100}}<10^{10^{10^{10}}}={ }^{4} 10
$$

Example

Example

Consider ${ }^{3} 3$.

Example

Consider ${ }^{3} 3$. Since

$$
3_{3}=3^{3^{3}}=3^{27}=7625597484987,
$$

we have

$$
{ }^{3} 3_{3}={ }^{7625597484987} 3 .
$$

Example

Consider ${ }^{3} 3$. Since

$$
{ }^{3} 3=3^{3^{3}}=3^{27}=7625597484987,
$$

we have

$$
{ }^{3} 33={ }^{7625597484987} 3 .
$$

This number is in the same "size class" as its logarithm.

Knuth Hyperoperators

Arrows
Exponentiation and tetration are denoted by arrows:

$$
n \uparrow m=n^{m} \quad n \uparrow \uparrow m={ }^{m} n .
$$

Knuth Hyperoperators

Arrows
Exponentiation and tetration are denoted by arrows:

$$
n \uparrow m=n^{m} \quad n \uparrow \uparrow m=m_{n} .
$$

Pentation

Iterated tetration, pentation, can be written thusly:

$$
3 \uparrow \uparrow \uparrow 4=3 \uparrow \uparrow(3 \uparrow \uparrow(3 \uparrow \uparrow 3))={ }^{\text {number from last slide }} 3
$$

Knuth Hyperoperators

Arrows

Exponentiation and tetration are denoted by arrows:

$$
n \uparrow m=n^{m} \quad n \uparrow \uparrow m=m_{n}
$$

Pentation

Iterated tetration, pentation, can be written thusly:

$$
3 \uparrow \uparrow \uparrow=3 \uparrow \uparrow(3 \uparrow \uparrow(3 \uparrow \uparrow 3))=\text { number from last slide } 3
$$

Hexation

$$
\begin{gathered}
6 \uparrow \uparrow \uparrow \uparrow 9 \\
=6 \uparrow \uparrow \uparrow(6 \uparrow \uparrow \uparrow 6)))))))
\end{gathered}
$$

Knuth Hyperoperators

The number of arrows indicates the number of "levels of recursion".

Knuth Hyperoperators

The number of arrows indicates the number of "levels of recursion".

Formal Definition

$$
n \uparrow^{0} m:=n m \quad n \uparrow^{k+1} 0:=1 \quad n \uparrow^{k+1}(m+1):=n \uparrow^{k}\left(n \uparrow^{k+1} m\right)
$$

Knuth Hyperoperators

The number of arrows indicates the number of "levels of recursion".

Formal Definition
$n \uparrow^{0} m:=n m \quad n \uparrow^{k+1} 0:=1 \quad n \uparrow^{k+1}(m+1):=n \uparrow^{k}\left(n \uparrow^{k+1} m\right)$

Comment
It's more common to start defining these at 1, but I found a way to start at 0 .

Graham's Number

Abstract

Setup The Graham-Rothschild Theorem implies that there exists a number n such that any 2 -colouring of the edges of the complete graph on the vertices of the n-dimensional hypercube contains a monochromatic coplanar K_{4}. Graham's number is an upper bound for the least such n.

Graham's Number

Setup

The Graham-Rothschild Theorem implies that there exists a number n such that any 2 -colouring of the edges of the complete graph on the vertices of the n-dimensional hypercube contains a monochromatic coplanar K_{4}. Graham's number is an upper bound for the least such n.

Definition
Define $g_{0}:=4, g_{n+1}:=3 \uparrow g_{n} 3$. Then Graham's Number is g_{64}.

Graham's Number

Setup

The Graham-Rothschild Theorem implies that there exists a number n such that any 2 -colouring of the edges of the complete graph on the vertices of the n-dimensional hypercube contains a monochromatic coplanar K_{4}. Graham's number is an upper bound for the least such n.

Definition
Define $g_{0}:=4, g_{n+1}:=3 \uparrow^{g_{n}} 3$. Then Graham's Number is g_{64}.
Lower bound
The best known lower bound for this problem is 13.

Conway Chained Arrows

Definition

$$
\begin{gathered}
():=1 \quad(a):=a \quad(a \rightarrow b):=a^{b} \\
(X \rightarrow 1):=X \quad(X \rightarrow 1 \rightarrow a):=X \\
(X \rightarrow(a+1) \rightarrow(b+1)):=(X \rightarrow(X \rightarrow a \rightarrow(b+1)) \rightarrow b)
\end{gathered}
$$

Conway Chained Arrows

Definition

$$
\begin{gathered}
():=1 \quad(a):=a \quad(a \rightarrow b):=a^{b} \\
(X \rightarrow 1):=X \quad(X \rightarrow 1 \rightarrow a):=X \\
(X \rightarrow(a+1) \rightarrow(b+1)):=(X \rightarrow(X \rightarrow a \rightarrow(b+1)) \rightarrow b)
\end{gathered}
$$

Relation to Knuth Arrows

$$
(a \rightarrow b \rightarrow c)=a \uparrow^{c} b
$$

Conway Chained Arrows

Definition

$$
\begin{gathered}
():=1 \quad(a):=a \quad(a \rightarrow b):=a^{b} \\
(X \rightarrow 1):=X \quad(X \rightarrow 1 \rightarrow a):=X \\
(X \rightarrow(a+1) \rightarrow(b+1)):=(X \rightarrow(X \rightarrow a \rightarrow(b+1)) \rightarrow b)
\end{gathered}
$$

Relation to Knuth Arrows

$$
(a \rightarrow b \rightarrow c)=a \uparrow^{c} b
$$

Hang on...
Is this notation even well-defined? Yes, but the easiest way to show this uses an idea we have yet to introduce.

Conway Chained Arrow Example 1

$$
\begin{aligned}
(3 \rightarrow 3 \rightarrow 1 \rightarrow 2) & =(3 \rightarrow 3)=3^{3}=27 \\
(3 \rightarrow 3 \rightarrow(n+1) \rightarrow 2) & =(3 \rightarrow 3 \rightarrow(3 \rightarrow 3 \rightarrow n \rightarrow 2) \rightarrow 1) \\
& =3 \uparrow^{(3 \rightarrow 3 \rightarrow n \rightarrow 2)} 3
\end{aligned}
$$

Conway Chained Arrow Example 1

$$
\begin{aligned}
(3 \rightarrow 3 \rightarrow 1 \rightarrow 2) & =(3 \rightarrow 3)=3^{3}=27 \\
(3 \rightarrow 3 \rightarrow(n+1) \rightarrow 2) & =(3 \rightarrow 3 \rightarrow(3 \rightarrow 3 \rightarrow n \rightarrow 2) \rightarrow 1) \\
& =3 \uparrow^{(3 \rightarrow 3 \rightarrow n \rightarrow 2)} 3
\end{aligned}
$$

Comparison with Graham's Number

$$
(3 \rightarrow 3 \rightarrow 64 \rightarrow 2)<g_{64}<(3 \rightarrow 3 \rightarrow 65 \rightarrow 2)
$$

Conway Chained Arrow Example 2

$$
\begin{aligned}
(3 \rightarrow 3 \rightarrow 2 \rightarrow 3) & =(3 \rightarrow 3 \rightarrow(3 \rightarrow 3 \rightarrow 1 \rightarrow 3) \rightarrow 2) \\
& =(3 \rightarrow 3 \rightarrow 27 \rightarrow 2) \\
(3 \rightarrow 3 \rightarrow 3 \rightarrow 3) & =(3 \rightarrow 3 \rightarrow(3 \rightarrow 3 \rightarrow 2 \rightarrow 3) \rightarrow 2) \\
(3 \rightarrow 3 \rightarrow 2 \rightarrow 4) & =(3 \rightarrow 3 \rightarrow 27 \rightarrow 3) \\
(3 \rightarrow 3 \rightarrow 3 \rightarrow 4) & =(3 \rightarrow 3 \rightarrow(3 \rightarrow 3 \rightarrow 2 \rightarrow 4) \rightarrow 3)
\end{aligned}
$$

Conway Chained Arrow Example 2

$$
\begin{aligned}
(3 \rightarrow 3 \rightarrow 2 \rightarrow 3) & =(3 \rightarrow 3 \rightarrow(3 \rightarrow 3 \rightarrow 1 \rightarrow 3) \rightarrow 2) \\
& =(3 \rightarrow 3 \rightarrow 27 \rightarrow 2) \\
(3 \rightarrow 3 \rightarrow 3 \rightarrow 3) & =(3 \rightarrow 3 \rightarrow(3 \rightarrow 3 \rightarrow 2 \rightarrow 3) \rightarrow 2) \\
(3 \rightarrow 3 \rightarrow 2 \rightarrow 4) & =(3 \rightarrow 3 \rightarrow 27 \rightarrow 3) \\
(3 \rightarrow 3 \rightarrow 3 \rightarrow 4) & =(3 \rightarrow 3 \rightarrow(3 \rightarrow 3 \rightarrow 2 \rightarrow 4) \rightarrow 3)
\end{aligned}
$$

$$
(6 \rightarrow 6 \rightarrow 6)=(a \operatorname{big} \text { number })
$$

Other Notatations

- Bower's Eploding Array Notation (BEAF)

Other Notatations

- Bower's Eploding Array Notation (BEAF)
- Bird's Array Notation

Other Notatations

- Bower's Eploding Array Notation (BEAF)
- Bird's Array Notation
- Extended Cascading-E Notation

Other Notatations

- Bower's Eploding Array Notation (BEAF)
- Bird's Array Notation
- Extended Cascading-E Notation

Complaint
These notations are rather ad hoc. Is there a more systematic way to generate big numbers?

"The" Fast-Growing Hierarchy

The Fast-Growing Hierarchy is a sequence of functions $f_{\alpha}: \mathbb{N} \rightarrow \mathbb{N}$ indexed by ordinals.

"The" Fast-Growing Hierarchy

The Fast-Growing Hierarchy is a sequence of functions $f_{\alpha}: \mathbb{N} \rightarrow \mathbb{N}$ indexed by ordinals.
The first few such functions are defined inductively:

$$
\begin{aligned}
f_{0}(n) & :=n+1 ; \\
f_{m+1}(n) & :=f_{m}^{n}(n) .
\end{aligned}
$$

"The" Fast-Growing Hierarchy

The Fast-Growing Hierarchy is a sequence of functions $f_{\alpha}: \mathbb{N} \rightarrow \mathbb{N}$ indexed by ordinals.
The first few such functions are defined inductively:

$$
\begin{aligned}
f_{0}(n) & :=n+1 ; \\
f_{m+1}(n) & :=f_{m}^{n}(n) .
\end{aligned}
$$

In general, f_{n} is comparable with $n \mapsto n \uparrow^{n} n$.

Fast-Growing Hierarchy Examples

$$
\begin{aligned}
f_{1}(n) & =f_{0}^{n}(n)=2 n \\
f_{2}(n) & =f_{1}^{n}(n)=2^{n} n>2 \uparrow n \\
f_{3}(3) & =f_{2}\left(f_{2}\left(f_{2}(3)\right)\right)=2^{2^{2^{3}} 2^{3}} 2^{2^{3}} 2^{3} 3 \\
& >2 \uparrow \uparrow 3 \\
f_{m+1}(n) & >2 \uparrow^{m} n
\end{aligned}
$$

Fast-Growing Hierarchy Examples

$$
\begin{aligned}
f_{1}(n) & =f_{0}^{n}(n)=2 n \\
f_{2}(n) & =f_{1}^{n}(n)=2^{n} n>2 \uparrow n \\
f_{3}(3) & =f_{2}\left(f_{2}\left(f_{2}(3)\right)\right)=2^{2^{3^{3}} 2^{3}} 2^{2^{3}} 2^{3} 3 \\
& >2 \uparrow \uparrow 3 \\
f_{m+1}(n) & >2 \uparrow^{m} n
\end{aligned}
$$

If FGH doesn't get us any faster speed than Knuth arrows, why bother? Because not all ordinals are finite.

Ordinals (Informal)

Comment

Despite only attempting to make large finite numbers, we now have occasion to introduce infinity, since it is useful.

Ordinals (Informal)

Comment

Despite only attempting to make large finite numbers, we now have occasion to introduce infinity, since it is useful.

Counting

Numbers are used for counting. Ordinals are an extension of numbers which enable you to count past infinity.

$$
0,1,2,3, \ldots, \omega, \omega+1, \ldots, \omega 2, \omega 2+1, \ldots, \omega 3, \omega 4, \ldots, \omega^{2}, \ldots
$$

Ordinals (Informal)

Comment

Despite only attempting to make large finite numbers, we now have occasion to introduce infinity, since it is useful.

Counting

Numbers are used for counting. Ordinals are an extension of numbers which enable you to count past infinity.

$$
0,1,2,3, \ldots, \omega, \omega+1, \ldots, \omega 2, \omega 2+1, \ldots, \omega 3, \omega 4, \ldots, \omega^{2}, \ldots
$$

Important Property

There are no infinite strictly-decreasing sequences of ordinals (i.e., any nonempty set of ordinals has a least element).

Fundamental Sequences

Successor and Limit Ordinals

An ordinal α is called a successor ordinal when there exists an ordinal β such that $\alpha=\beta+1$. An ordinal is called a limit ordinal when it is not a successor ordinal.

Fundamental Sequences

Successor and Limit Ordinals
An ordinal α is called a successor ordinal when there exists an ordinal β such that $\alpha=\beta+1$. An ordinal is called a limit ordinal when it is not a successor ordinal.

Fundamental Sequences

To each limit ordinal α is assigned a fundamental sequence: a sequence of ordinals which "approach" α.

Fundamental Sequences

Successor and Limit Ordinals
An ordinal α is called a successor ordinal when there exists an ordinal β such that $\alpha=\beta+1$. An ordinal is called a limit ordinal when it is not a successor ordinal.

Fundamental Sequences

To each limit ordinal α is assigned a fundamental sequence: a sequence of ordinals which "approach" α.

$$
\begin{aligned}
& \omega: 0,1,2, \ldots \\
& \omega 2: \omega, \omega+1, \omega+2, \ldots \\
& \omega^{2}: \omega, \omega 2, \omega 3, \ldots \\
& \omega^{\omega}: 1, \omega, \omega^{2}, \omega^{3}, \ldots
\end{aligned}
$$

FGH for Limit Ordinals

To the other two rules of the FGH, we add a third rule:

$$
f_{\alpha}(n)=f_{\alpha[n]}(n) \quad \alpha \text { a limit ordinal }
$$

FGH for Limit Ordinals

To the other two rules of the FGH, we add a third rule:

$$
f_{\alpha}(n)=f_{\alpha[n]}(n) \quad \alpha \text { a limit ordinal }
$$

Example

$$
\begin{aligned}
f_{\omega+1}(3) & =f_{\omega}(3)=f_{\omega}\left(f_{\omega}\left(f_{3}(3)\right)\right)>f_{\omega}\left(f_{\omega}(2 \uparrow \uparrow 3)\right) \\
& =f_{\omega}\left(f_{\omega}(65536)\right)=f_{\omega}\left(f_{65536}(65536)\right)<f_{\omega}\left(2 \uparrow^{65535} 65536\right) \\
& <2 \uparrow^{2 \uparrow^{65535} 65536-1}\left(2 \uparrow^{65535} 65536\right)
\end{aligned}
$$

Comparison with Previous Numbers

Graham's Number
The function $f_{\omega+1}$ is comparable with Graham's g. We have $f_{\omega+1}(64)>g_{64}$.

Comparison with Previous Numbers

Graham's Number
The function $f_{\omega+1}$ is comparable with Graham's g. We have $f_{\omega+1}(64)>g_{64}$.

Conway's Chained Arrows
The function $f_{\omega n}$ is compariable to Conway chained arrow notation with n arrows. The function $f_{\omega^{2}}$ diagonalizes over Conway chained arrow notation. Non-coincidentally, ω^{2} is used in the most natural proof that the notation is well-defined.

Comparison with Previous Numbers

Graham's Number
The function $f_{\omega+1}$ is comparable with Graham's g. We have $f_{\omega+1}(64)>g_{64}$.

Conway's Chained Arrows
The function $f_{\omega n}$ is compariable to Conway chained arrow notation with n arrows. The function $f_{\omega^{2}}$ diagonalizes over Conway chained arrow notation. Non-coincidentally, ω^{2} is used in the most natural proof that the notation is well-defined.
Transfinite Recursion on ω^{2}
For the arrow configuration $X \rightarrow a \rightarrow b$, assign the ordinal $\omega b+a$. Then the Conway notation is well-defined, since there are no infinite strictly decreasing sequences of ordinals.

Higher FGH Example

All previous notation got us merely up to ω^{2}. We have much greater power available to use now.

Higher FGH Example

All previous notation got us merely up to ω^{2}. We have much greater power available to use now.

Example

$$
\begin{aligned}
& f_{\omega^{\omega}}(4) \\
& =f_{\omega^{4}}(4)=f_{\omega^{3} 4}(4)=f_{\omega^{3} 3+\omega^{2} 4}(4)=f_{\omega^{3} 3+\omega^{2} 3+4 \omega}(4)=f_{\omega^{3} 3+\omega^{2} 3+3 \omega+4}(4) \\
& =f_{\omega^{3} 3+\omega^{2} 3+3 \omega+3}\left(f_{\omega^{3} 3+\omega^{2} 3+3 \omega+3}\left(f_{\omega^{3} 3+\omega^{2} 3+3 \omega+3}\left(f_{\omega^{3} 3+\omega^{2} 3+3 \omega+3}(4)\right)\right)\right)
\end{aligned}
$$

Higher FGH Example

All previous notation got us merely up to ω^{2}. We have much greater power available to use now.

Example

$$
\begin{aligned}
& f_{\omega^{\omega}}(4) \\
& =f_{\omega^{4}}(4)=f_{\omega^{3} 4}(4)=f_{\omega^{3} 3+\omega^{2} 4}(4)=f_{\omega^{3} 3+\omega^{2} 3+4 \omega}(4)=f_{\omega^{3} 3+\omega^{2} 3+3 \omega+4}(4) \\
& =f_{\omega^{3} 3+\omega^{2} 3+3 \omega+3}\left(f_{\omega^{3} 3+\omega^{2} 3+3 \omega+3}\left(f_{\omega^{3} 3+\omega^{2} 3+3 \omega+3}\left(f_{\omega^{3} 3+\omega^{2} 3+3 \omega+3}(4)\right)\right)\right)
\end{aligned}
$$

Comment
This number is big.

Ordinals past ω^{ω}

To get large finite numbers, we now need large (countable) ordinals (and fundamental sequences for them).

Ordinals past ω^{ω}

To get large finite numbers, we now need large (countable) ordinals (and fundamental sequences for them). The sequence continues...

$$
\begin{aligned}
& \ldots, \omega^{\omega}, \omega^{\omega}+1, \ldots, \omega^{\omega} 2, \ldots, \omega^{\omega} 3, \ldots, \omega^{\omega+1}, \ldots, \omega^{\omega+1} 2, \\
& \ldots, \omega^{\omega+2}, \ldots, \omega^{\omega 2}, \ldots, \omega^{\omega^{2}}, \ldots, \omega^{\omega^{2}+1}, \ldots, \omega^{\omega^{2} 2}, \ldots, \omega^{\omega^{3}}, \\
& \ldots, \omega^{\omega^{\omega}}, \ldots, \omega^{\omega^{\omega^{\omega}}}, \ldots, \omega^{\omega^{\omega^{\omega}}}, \ldots
\end{aligned}
$$

Ordinals past ω^{ω}

To get large finite numbers, we now need large (countable) ordinals (and fundamental sequences for them).
The sequence continues...

$$
\begin{aligned}
& \ldots, \omega^{\omega}, \omega^{\omega}+1, \ldots, \omega^{\omega} 2, \ldots, \omega^{\omega} 3, \ldots, \omega^{\omega+1}, \ldots, \omega^{\omega+1} 2, \\
& \ldots, \omega^{\omega+2}, \ldots, \omega^{\omega 2}, \ldots, \omega^{\omega^{2}}, \ldots, \omega^{\omega^{2}+1}, \ldots, \omega^{\omega^{2} 2}, \ldots, \omega^{\omega^{3}}, \\
& \ldots, \omega^{\omega^{\omega}}, \ldots, \omega^{\omega^{\omega^{\omega}}}, \ldots, \omega^{\omega^{\omega^{\omega}}}, \ldots
\end{aligned}
$$

ε_{0}
The supremum of this sequence is called ε_{0}. This is the first fixed point of $\alpha \rightarrow \omega^{\alpha}$. It is associated with the fundamental sequence:

$$
1, \omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \omega^{\omega^{\omega^{\omega}}}, \ldots
$$

Ordinal Representations

Ordinals less than ω^{ω} can be represented as finite sequences of numbers.

Ordinal Representations

Ordinals less than ω^{ω} can be represented as finite sequences of numbers.
Ordinals less than ε_{0} can be represented as finite trees of numbers.

The Goodstein Function

Hereditary Base- n Notation

Write a number in base- n. Then write the exponents in base- n notation. Continue. Example:

$$
69=2^{6}+2^{2}+2^{1}=2^{2^{2^{1}}+2^{1}}+2^{2^{1}}+2^{1}
$$

The Goodstein Function

Hereditary Base- n Notation

Write a number in base- n. Then write the exponents in base- n notation. Continue. Example:

$$
69=2^{6}+2^{2}+2^{1}=2^{2^{2^{1}}+2^{1}}+2^{2^{1}}+2^{1}
$$

Next Step

Change the 2's to 3 's, and subtract 1 . So on:

$$
\begin{aligned}
& 3^{3^{3^{1}}+3^{1}}+3^{3^{1}}+3^{1}-1=3^{3^{3^{1}}+3^{1}}+3^{3^{1}}+2 \\
& 4^{4^{4^{1}}+4^{1}}+4^{4^{1}}+2-1=4^{4^{4^{1}}+4^{1}}+4^{4^{1}}+1 \\
& =5^{5^{5^{1}}+5^{1}}+5^{5^{1}}+1-1=5^{5^{5^{1}}+5^{1}}+5^{5^{1}}
\end{aligned}
$$

The Goodstein Function, Continued

Goodstein's Theorem
For any number n, the sequence contructed in the previous slide will always eventually reach 0 .

The Goodstein Function \mathscr{G}
For any number $n, \mathscr{G}(n)$ is defined to be the number of steps required until the above sequence (starting with n) reaches 0 .

Note
The function \mathscr{G} has growth rate $\sim f_{\varepsilon_{0}}$. This can be understood as due to the "tree-like" structure of hereditary base- n notation.

Ordinals Past ε_{0}

Other Fixed Points

The function $\alpha \mapsto \omega^{\alpha}$ is a normal function, so it has arbitrarily many fixed points (see MATH3306). The ordinal ε_{0} is the first such fixed point. The next is ε_{1}. A typical fundamental sequence for this is

$$
\varepsilon_{0}+1, \omega^{\varepsilon_{0}+1}, \omega^{\omega_{0}+1}, \ldots
$$

Note that $w^{\varepsilon_{0}}=\varepsilon_{0}$. Fundamental sequences for other " ε-numbers" can be constructed similarly.

Ordinals Past ε_{0}

Other Fixed Points

The function $\alpha \mapsto \omega^{\alpha}$ is a normal function, so it has arbitrarily many fixed points (see MATH3306). The ordinal ε_{0} is the first such fixed point. The next is ε_{1}. A typical fundamental sequence for this is

$$
\varepsilon_{0}+1, \omega^{\varepsilon_{0}+1}, \omega^{\omega^{\varepsilon_{0}+1}}, \ldots
$$

Note that $w^{\varepsilon_{0}}=\varepsilon_{0}$. Fundamental sequences for other
" ε-numbers" can be constructed similarly.
ε fixed points
The function $\alpha \rightarrow \varepsilon_{\alpha}$ is also normal, so it to has arbitrarily many fixed points. The first such fixed point is denoted by ζ_{0}, with fundamental sequence

$$
0, \varepsilon_{0}, \varepsilon_{\varepsilon_{0}}, \varepsilon_{\varepsilon_{\varepsilon_{0}}}, \ldots,
$$

Of course, we can then define ζ_{1}. And $\zeta_{\zeta_{\zeta, \ldots} . .}$.

The Veblen Hierarchy

We have the ε ordinals, the ζ ordinals, etc. This can be seen as the start of another infinite hierarchy.

The Veblen Hierarchy

We have the ε ordinals, the ζ ordinals, etc. This can be seen as the start of another infinite hierarchy.
The Veblen Function
Roughly, for ordinals α and $\beta, \varphi_{\alpha+1}(\beta)$ is defined to be the beta-th fixed point of φ_{α}.

The Veblen Hierarchy

We have the ε ordinals, the ζ ordinals, etc. This can be seen as the start of another infinite hierarchy.
The Veblen Function
Roughly, for ordinals α and $\beta, \varphi_{\alpha+1}(\beta)$ is defined to be the beta-th fixed point of φ_{α}.

The Fefferman-Schütte Ordinal
This is the first ordinal α such that $\varphi_{\alpha}(0)=\alpha$. In other words, it enables the Veblen function to "eat itself". It is denoted Γ_{0}.

The Veblen Hierarchy

We have the ε ordinals, the ζ ordinals, etc. This can be seen as the start of another infinite hierarchy.
The Veblen Function
Roughly, for ordinals α and $\beta, \varphi_{\alpha+1}(\beta)$ is defined to be the beta-th fixed point of φ_{α}.

The Fefferman-Schütte Ordinal
This is the first ordinal α such that $\varphi_{\alpha}(0)=\alpha$. In other words, it enables the Veblen function to "eat itself". It is denoted Γ_{0}.

Higher Countable Ordinals

One can define higher countable ordinals, with correspondingly more complicated notations and fundamental sequences.

Proof Theoretic Ordinals

Warning

This content will be more vague than usual. It may not be accurate.

Inserted After Talk...
(In fact, the following slides were not accurate, so I've taken the liberty of removing them.)

Conclusion?

Numbers have no end. But this talk must.

Conclusion?

Numbers have no end. But this talk must. How big do numbers get?

Conclusion?

Numbers have no end. But this talk must. How big do numbers get?
Very...

Conclusion?

Numbers have no end. But this talk must. How big do numbers get?
Very...

Conclusion?

Numbers have no end. But this talk must. How big do numbers get?
Very...

Conclusion?

Numbers have no end. But this talk must. How big do numbers get?
Very...

Conclusion?

Numbers have no end. But this talk must. How big do numbers get?
Very...

Conclusion?

Numbers have no end. But this talk must. How big do numbers get?
Very...

Conclusion?

Numbers have no end. But this talk must. How big do numbers get?
Very...

Conclusion?

Numbers have no end. But this talk must. How big do numbers get?
Very...

Conclusion?

Numbers have no end. But this talk must. How big do numbers get?
Very...

Conclusion?

Numbers have no end. But this talk must. How big do numbers get?
Very...

Conclusion?

Numbers have no end. But this talk must. How big do numbers get?
Very...

Conclusion?

Numbers have no end. But this talk must. How big do numbers get?
Very...

Conclusion?

Numbers have no end. But this talk must. How big do numbers get?
Very...

