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A Problem in the Plane

Suppose we have m randomly drawn lines in R2. With
probability 1, no two lines will be parallel and no three will
meet at point.

How many regions does this cut the plane into?
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m = 3 Example

We can count that r(A) = 7, what about for a general m?
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General m

r(A) = 1︸︷︷︸
plane

+ 1︸︷︷︸
1st line

+ 2︸︷︷︸
2nd line

+ ???︸︷︷︸
other lines
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jth Line

1. Start drawing the jth line far away from all others.
2. Any time we intersect a line, we split the region we were
just in into two, adding a region.

3. This happens j− 1 times for each of the lines already
drawn.

4. Then we split the region that we travel to infinity in into
two, adding one region.

In total the jth line adds (j− 1) + 1 = j regions!
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General m

r(A) = 1︸︷︷︸
plane

+ 1︸︷︷︸
1st line

+ 2︸︷︷︸
2nd line

+ · · ·+ j︸︷︷︸
jth line

+ · · ·+ m︸︷︷︸
mth line

= 1+
m∑
j=1

j

= 1+ m(m+ 1)
2

6



Generalising to Rn

A hyperplane is an (n− 1)-dimensional affine subspace of Rn

(a translational of an (n− 1)-dimensional vector subspace).
More concretely, let v1, . . . , vn,a ∈ R with not all vi zero. Then
the set of points x = (x1, . . . , xn) ∈ Rn satisfying

v1x1 + · · ·+ vnxn = a

is a hyperplane. (Think a line in R2.)

A hyperplane arrangement A is a finite set of hyperplanes.
(Think the set of m lines in R2.)
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Generalising to Rn

Let A = {H1, . . . ,Hm} be an arrangement. We can define the
hyperplane complement M,

M = Rn \
⋃
Hi∈A

Hi

(Think all the empty space in R2 after drawing the lines.)

A region is a connected component of the hyperplane
complement M. (Think one of the pieces that the lines cut the
plane into.)
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An Example in R3

Hyperplane equations:

x1 = x2, x2 = x3, x1 = x3
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An Example in R3

A different perspective...

We can count that r(A) = 6.
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A Harder Example...

Define the braid arrangement in Rn to be

Bn = {xi = xj | 1 ≤ i < j ≤ n}

The example we just saw is B3.

How do we count the number of regions in Bn?
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An Observation About Regions

A hyperplane divides Rn into two half-spaces.

For the plane xi = xj, the corresponding half-spaces would be

xi > xj, xi < xj

The key observation is that x, y ∈ Rn are in the same region if
and only if for each hyperplane, x and y are in the same
half-space.
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Counting Regions for Bn

Let k = (k1, . . . , kn) be in the hyperplane complement of Bn.
Since Bn is all xi = xj hyperplanes, all ki are distinct!

The components can be ordered

ki1 < ki2 < · · · < kin ,

for some order of indices {i1, . . . , in} = {1, . . . ,n}.

Any l = (l1, . . . , ln) satisfying the same ordering

li1 < li2 < · · · < lin

is in the same region as k.

Why? Because k and l satisfy the same xi > xj or xi < xj
relations!
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Counting Regions for Bn

If m = (m1, . . . ,mn) has a different ordering of components

mj1 < mj2 < · · · < mjn

then there is a least one i, j pair such that, say, ki > kj while
mi < mj.

So k and m are in different regions!

The upshot — the number of regions is the same as number of
orderings of indices, so r(Bn) = n!.
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The Intersection Poset

For an arrangement A, the intersection poset L(A) is the set

L(A) = {Rn} ∪ {Hi1 ∩ · · · ∩ His ̸= ∅ |Hik ∈ A, s ≥ 1}

equipped with the partial order of reverse inclusion. For
x, y ∈ L(A), x ≤ y if x ⊇ y.

This is a combinatorial object, not geometric/topological.

Rn is the minimal element since for any x ∈ L(A), Rn ⊇ x,
which means Rn ≤ x.
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L(B3)

H1 ∩ H2 ∩ H3

H1 H2 H3

R3
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The Möbius Function

For x, y ∈ L(A) with x ≤ y, define the Möbius function by

µ(x, y) =


1 if x = y,
−

∑
x≤t<y

µ(x, t) otherwise.

The key characteristic of this function is the Möbius inversion
formula. If f,g : L(A) → R, then

f(x) =
∑
t≥x

g(t)

is equivalent to
g(x) =

∑
t≥x

µ(x, t)f(t)
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The Characteristic Polynomial

For an arrangement A, define the characteristic polynomial
pA(t) as

pA(t) =
∑
x∈L(A)

µ(Rn, x) tdim(x)

This polynomial encodes information about the Möbius
function in the coefficients.
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The Big Theorem

In 1975, Thomas Zaslavsky proved the following theorem:

Let A be an arrangement in Rn. Then, the number of regions is
given by

r(A) = (−1)npA(−1)

This is our dictionary to translate between topology and
combinatorics.
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A Topological Tool

We’re going to need the Euler characteristic, denoted χ. For a
shape in the plane, decompose into vertices, edges and faces.
Then χ is defined by

χ = #V−#E+#F

For example, we can decompose an annulus as so:

The Euler characteristic is

χ = #V−#E+#F = 6− 9+ 3 = 0
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Euler Characteristic in Rn

For a topological space, fix a decomposition. Let ki be the
number of i-dimensional “cells”. Then χ is defined as

χ = k0 − k1 + k2 − · · · =
∑
i
(−1)iki

For nice spaces and decompositions, this is independent of the
exact choice of decomposition!
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The Subarrangement Ax

For any x ∈ L(A), define the subarrangement Ax by

Ax = {x ∩ H |H ∈ A and x ∩ H ̸= ∅, x ∩ H ̸= x}

A

H1 = x

H2
H3

Ax ⊆ x

H1 = x x ∩ H2

x ∩ H3
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Proving the Theorem

By decomposing x as a single dim(x)-dimensional cell, we have

χ(x) =
∑
i
(−1)iki = (−1)dim(x)

Ax is a decomposition that we can use to compute χ(x).

r(Ax) is the number of dim(x)-dimensional cells that make up
x.

To count all cells of all dimensions, sum over t ≥ x (cells t ⊆ x).

So we also have

χ(x) =
∑
i
(−1)iki =

∑
t≥x

(−1)dim(t)r(At)
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Proving the Theorem

H1 = x x ∩ H2

x ∩ H3
χ(x) =

∑
t≥x

(−1)dim(t)r(At)

= (−1)1 · 3+ (−1)0 · 1+ (−1)0 · 1
= −1

Matches χ(x) = (−1)dim(x) = (−1)1
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Proving the Theorem

For any x ∈ L(A), by computing χ(x) in two ways we have that

(−1)dim(x) =
∑
t≥x

(−1)dim(t)r(At)

By Möbius inversion we get

(−1)dim(x)r(Ax) =
∑
t≥x

µ(x, t) (−1)dim(t)
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Proving the Theorem

We want to know r(A) = r(ARn), so set x = Rn to get

(−1)dim(Rn)r(A) =
∑
t≥Rn

µ(Rn, t)(−1)dim(t)

But dim(Rn) = n and t ≥ Rn is all t ∈ L(A) since Rn is the
minimal element. Substituting and rearranging gives

r(A) = (−1)n
∑
t∈L(A)

µ(Rn, t)(−1)dim(t),

which by definition means

r(A) = (−1)npA(−1),

proving the theorem!
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