Hyperplane Arrangements

A Link Between Combinatorics and Topology

Declan Fletcher

March 2023

A Problem in the Plane

Suppose we have m randomly drawn lines in \mathbb{R}^{2}. With probability 1 , no two lines will be parallel and no three will meet at point.

How many regions does this cut the plane into?

$m=3$ Example

We can count that $r(\mathcal{A})=7$, what about for a general m ?

$$
r(\mathcal{A})=\underbrace{1}_{\text {plane }}+\underbrace{1}_{1^{\text {st }} \text { line }}+\underbrace{2}_{2^{\text {nd }} \text { line }}+\underbrace{? ? ?}_{\text {other lines }}
$$

1. Start drawing the $j^{\text {th }}$ line far away from all others.
2. Any time we intersect a line, we split the region we were just in into two, adding a region.
3. This happens $j-1$ times for each of the lines already drawn.
4. Then we split the region that we travel to infinity in into two, adding one region.

In total the $j^{\text {th }}$ line adds $(j-1)+1=j$ regions!

General m

$$
\begin{aligned}
r(\mathcal{A}) & =\underbrace{1}_{\text {plane }}+\underbrace{1}_{\text {stt line }}+\underbrace{2}_{2^{\text {nd }} \text { line }}+\cdots+\underbrace{j}_{j^{\text {th line }}}+\cdots+\underbrace{m}_{m^{\text {th }} \text { line }} \\
& =1+\sum_{j=1}^{m} j \\
& =1+\frac{m(m+1)}{2}
\end{aligned}
$$

Generalising to \mathbb{R}^{n}

A hyperplane is an $(n-1)$-dimensional affine subspace of \mathbb{R}^{n} (a translational of an $(n-1)$-dimensional vector subspace). More concretely, let $v_{1}, \ldots, v_{n}, a \in \mathbb{R}$ with not all v_{i} zero. Then the set of points $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ satisfying

$$
v_{1} x_{1}+\cdots+v_{n} x_{n}=a
$$

is a hyperplane. (Think a line in \mathbb{R}^{2}.)
A hyperplane arrangement \mathcal{A} is a finite set of hyperplanes.
(Think the set of m lines in \mathbb{R}^{2}.)

Generalising to \mathbb{R}^{n}

Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{m}\right\}$ be an arrangement. We can define the hyperplane complement M,

$$
M=\mathbb{R}^{n} \backslash \bigcup_{H_{i} \in \mathcal{A}} H_{i}
$$

(Think all the empty space in \mathbb{R}^{2} after drawing the lines.)
A region is a connected component of the hyperplane complement M. (Think one of the pieces that the lines cut the plane into.)

An Example in \mathbb{R}^{3}

Hyperplane equations:

$$
x_{1}=x_{2}, \quad x_{2}=x_{3}, \quad x_{1}=x_{3}
$$

An Example in \mathbb{R}^{3}

A different perspective...

We can count that $r(\mathcal{A})=6$.

A Harder Example...

Define the braid arrangement in \mathbb{R}^{n} to be

$$
\mathcal{B}_{n}=\left\{x_{i}=x_{j} \mid 1 \leq i<j \leq n\right\}
$$

The example we just saw is \mathcal{B}_{3}.
How do we count the number of regions in \mathcal{B}_{n} ?

An Observation About Regions

A hyperplane divides \mathbb{R}^{n} into two half-spaces.
For the plane $x_{i}=x_{j}$, the corresponding half-spaces would be

$$
x_{i}>x_{j}, \quad x_{i}<x_{j}
$$

The key observation is that $x, y \in \mathbb{R}^{n}$ are in the same region if and only if for each hyperplane, x and y are in the same half-space.

Counting Regions for \mathcal{B}_{n}

Let $k=\left(k_{1}, \ldots, k_{n}\right)$ be in the hyperplane complement of \mathcal{B}_{n}. Since \mathcal{B}_{n} is all $x_{i}=x_{j}$ hyperplanes, all k_{i} are distinct!

The components can be ordered

$$
k_{i_{1}}<k_{i_{2}}<\cdots<k_{i_{n}},
$$

for some order of indices $\left\{i_{1}, \ldots, i_{n}\right\}=\{1, \ldots, n\}$.
Any $l=\left(l_{1}, \ldots, l_{n}\right)$ satisfying the same ordering

$$
l_{i_{1}}<l_{i_{2}}<\cdots<l_{i_{n}}
$$

is in the same region as k.
Why? Because k and l satisfy the same $x_{i}>x_{j}$ or $x_{i}<x_{j}$ relations!

Counting Regions for \mathcal{B}_{n}

If $m=\left(m_{1}, \ldots, m_{n}\right)$ has a different ordering of components

$$
m_{j_{1}}<m_{j_{2}}<\cdots<m_{j_{n}}
$$

then there is a least one i, j pair such that, say, $k_{i}>k_{j}$ while $m_{i}<m_{j}$.
So k and m are in different regions!
The upshot - the number of regions is the same as number of orderings of indices, sor $\left(\mathcal{B}_{n}\right)=n!$.

The Intersection Poset

For an arrangement \mathcal{A}, the intersection poset $L(\mathcal{A})$ is the set

$$
L(\mathcal{A})=\left\{\mathbb{R}^{n}\right\} \cup\left\{H_{i_{1}} \cap \cdots \cap H_{i_{s}} \neq \emptyset \mid H_{i_{k}} \in \mathcal{A}, s \geq 1\right\}
$$

equipped with the partial order of reverse inclusion. For $x, y \in L(\mathcal{A}), x \leq y$ if $x \supseteq y$.

This is a combinatorial object, not geometric/topological.
\mathbb{R}^{n} is the minimal element since for any $x \in L(\mathcal{A}), \mathbb{R}^{n} \supseteq x$, which means $\mathbb{R}^{n} \leq x$.

The Möbius Function

For $x, y \in L(\mathcal{A})$ with $x \leq y$, define the Möbius function by

$$
\mu(x, y)= \begin{cases}1 & \text { if } x=y \\ -\sum_{x \leq t<y} \mu(x, t) & \text { otherwise }\end{cases}
$$

The key characteristic of this function is the Möbius inversion formula. If $f, g: L(\mathcal{A}) \rightarrow \mathbb{R}$, then

$$
f(x)=\sum_{t \geq x} g(t)
$$

is equivalent to

$$
g(x)=\sum_{t \geq x} \mu(x, t) f(t)
$$

The Characteristic Polynomial

For an arrangement \mathcal{A}, define the characteristic polynomial $p_{\mathcal{A}}(t)$ as

$$
p_{\mathcal{A}}(t)=\sum_{x \in L(\mathcal{A})} \mu\left(\mathbb{R}^{n}, x\right) t^{\operatorname{dim}(x)}
$$

This polynomial encodes information about the Möbius function in the coefficients.

The Big Theorem

In 1975, Thomas Zaslavsky proved the following theorem:
Let \mathcal{A} be an arrangement in \mathbb{R}^{n}. Then, the number of regions is given by

$$
r(\mathcal{A})=(-1)^{n} p_{\mathcal{A}}(-1)
$$

This is our dictionary to translate between topology and combinatorics.

A Topological Tool

We're going to need the Euler characteristic, denoted χ. For a shape in the plane, decompose into vertices, edges and faces.
Then χ is defined by

$$
\chi=\# V-\# E+\# F
$$

For example, we can decompose an annulus as so:

The Euler characteristic is

$$
\chi=\# V-\# E+\# F=6-9+3=0
$$

Euler Characteristic in \mathbb{R}^{n}

For a topological space, fix a decomposition. Let k_{i} be the number of i-dimensional "cells". Then χ is defined as

$$
\chi=k_{0}-k_{1}+k_{2}-\cdots=\sum_{i}(-1)^{i} k_{i}
$$

For nice spaces and decompositions, this is independent of the exact choice of decomposition!

The Subarrangement $\mathcal{A}^{\text {x }}$

For any $x \in L(\mathcal{A})$, define the subarrangement \mathcal{A}^{x} by

$$
\mathcal{A}^{x}=\{x \cap H \mid H \in \mathcal{A} \text { and } x \cap H \neq \emptyset, x \cap H \neq x\}
$$

Proving the Theorem

By decomposing x as a single $\operatorname{dim}(x)$-dimensional cell, we have

$$
\chi(x)=\sum_{i}(-1)^{i} k_{i}=(-1)^{\operatorname{dim}(x)}
$$

\mathcal{A}^{x} is a decomposition that we can use to compute $\chi(x)$.
$r\left(\mathcal{A}^{x}\right)$ is the number of $\operatorname{dim}(x)$-dimensional cells that make up x.

To count all cells of all dimensions, sum over $t \geq x($ cells $t \subseteq x)$.
So we also have

$$
\chi(x)=\sum_{i}(-1)^{i} k_{i}=\sum_{t \geq x}(-1)^{\operatorname{dim}(t)} r\left(\mathcal{A}^{t}\right)
$$

Proving the Theorem

$$
\begin{aligned}
\chi(x) & =\sum_{t \geq x}(-1)^{\operatorname{dim}(t)} r\left(\mathcal{A}^{t}\right) \\
& =(-1)^{1} \cdot 3+(-1)^{0} \cdot 1+(-1)^{0} \cdot 1 \\
& =-1
\end{aligned}
$$

Matches $\chi(x)=(-1)^{\operatorname{dim}(x)}=(-1)^{1}$

Proving the Theorem

For any $x \in L(\mathcal{A})$, by computing $\chi(x)$ in two ways we have that

$$
(-1)^{\operatorname{dim}(x)}=\sum_{t \geq x}(-1)^{\operatorname{dim}(t)} r\left(\mathcal{A}^{t}\right)
$$

By Möbius inversion we get

$$
(-1)^{\operatorname{dim}(x)} r\left(\mathcal{A}^{x}\right)=\sum_{t \geq x} \mu(x, t)(-1)^{\operatorname{dim}(t)}
$$

Proving the Theorem

We want to know $r(\mathcal{A})=r\left(\mathcal{A}^{\mathbb{R}^{n}}\right)$, so set $x=\mathbb{R}^{n}$ to get

$$
(-1)^{\operatorname{dim}\left(\mathbb{R}^{n}\right)} r(\mathcal{A})=\sum_{t \geq \mathbb{R}^{n}} \mu\left(\mathbb{R}^{n}, t\right)(-1)^{\operatorname{dim}(t)}
$$

But $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$ and $t \geq \mathbb{R}^{n}$ is all $t \in L(\mathcal{A})$ since \mathbb{R}^{n} is the minimal element. Substituting and rearranging gives

$$
r(\mathcal{A})=(-1)^{n} \sum_{t \in L(\mathcal{A})} \mu\left(\mathbb{R}^{n}, t\right)(-1)^{\operatorname{dim}(t)}
$$

which by definition means

$$
r(\mathcal{A})=(-1)^{n} p_{\mathcal{A}}(-1)
$$

proving the theorem!

References

- An Introduction to Hyperplane Arrangements, Richard P. Stanley, https://math.mit.edu/~rstan/arrangements/arr.html, 2006.
- Arrangements of Hyperplanes, Peter Orlik, Hiroaki Terao, Springer-Verlag, 1992.

