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A Problem in the Plane

Suppose we have m randomly drawn lines in R2. With

probability 1, no two lines will be parallel and no three will
meet at point.

How many regions does this cut the plane into?



m = 3 Example

We can count that r(A) = 7, what about for a general m?
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. Start drawing the jt™" line far away from all others.

. Any time we intersect a line, we split the region we were
just in into two, adding a region.

. This happens j — 1 times for each of the lines already
drawn.

. Then we split the region that we travel to infinity in into
two, adding one region.

In total the j™ line adds (j — 1) + 1= regions!
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Generalising to R"

A hyperplane is an (n — 1)-dimensional affine subspace of R"”
(a translational of an (n — 1)-dimensional vector subspace).
More concretely, let vq,..., vy, a € R with not all v; zero. Then
the set of points x = (x1,...,Xn) € R" satisfying

is a hyperplane. (Think a line in R?.)

A hyperplane arrangement A is a finite set of hyperplanes.
(Think the set of m lines in R?.)



Generalising to R"

Let A = {Ha,...,Hn} be an arrangement. We can define the
hyperplane complement M,

M=R"\ | H
H;eA
(Think all the empty space in R? after drawing the lines.)

A region is a connected component of the hyperplane
complement M. (Think one of the pieces that the lines cut the
plane into.)



An Example in R3
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Hyperplane equations:

X1 =X, X2=X3, X1=X3



An Example in R3

A different perspective...

T

We can count that r(A) = 6.
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A Harder Example...

Define the braid arrangement in R" to be
Br={Xi=x|1<i<j<n}

The example we just saw is Bs.

How do we count the number of regions in B,?
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An Observation About Regions

A hyperplane divides R" into two half-spaces.

For the plane x; = x;, the corresponding half-spaces would be
Xi > Xj,  Xp <X
The key observation is that x,y € R" are in the same region if

and only if for each hyperplane, x and y are in the same
half-space.
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Counting Regions for B,

Let k = (Ri,...,Rn) be in the hyperplane complement of B,.
Since By is all x; = x; hyperplanes, all k; are distinct!

The components can be ordered
Ri, < Rj, <--- <R,

for some order of indices {i1,...,in} ={1,...,n}.

Any [ = (ly,...,ly) satisfying the same ordering

In

w<liz

is in the same region as k.

Why? Because k and [ satisfy the same x; > X; or x; < x;
relations!
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Counting Regions for B,

If m=(mn,...,my) has a different ordering of components
mj, < Mjp <« < Mj,

then there is a least one i, pair such that, say, k; > k; while

m; <m;.

So kand m are in different regions!

The upshot — the number of regions is the same as number of
orderings of indices, so r(B,) = nl.
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The Intersection Poset

For an arrangement A, the intersection poset L(A) is the set
L(A) ={R"}U{H; N---NH #0|H;, € A,s>1}

equipped with the partial order of reverse inclusion. For
X,y e L(A),x<yifxDy.
This is a combinatorial object, not geometric/topological.

R" is the minimal element since for any x € L(A), R" D x,
which means R" < x.
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The Mobius Function

For x,y € L(A) with x <y, define the Mobius function by

1 ifx=y,

p6y) =9 _ Z p(x,t) otherwise.
x<t<y

The key characteristic of this function is the Mobius inversion
formula. If f,g : L(A) — R, then

fx)=3_9(t)

is equivalent to

9(x) = D u(x, f(t)

t>x



The Characteristic Polynomial

For an arrangement A, define the characteristic polynomial

pa(t) as .
pa) = Y u(R" Xt
xelL(A)
This polynomial encodes information about the Mobius
function in the coefficients.



The Big Theorem

In 1975, Thomas Zaslavsky proved the following theorem:

Let A be an arrangement in R". Then, the number of regions is

given by
r(A) = (=1)"pa(-1)

This is our dictionary to translate between topology and
combinatorics.
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A Topological Tool

We're going to need the Euler characteristic, denoted . For a
shape in the plane, decompose into vertices, edges and faces.
Then x is defined by

X =#V —#E+#F

For example, we can decompose an annulus as so:

The Euler characteristic is
X=#V—-—#E+#F=6-9+3=0
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Euler Characteristic in R"

For a topological space, fix a decomposition. Let k; be the
number of i-dimensional “cells”. Then y is defined as

X=hko—Ri+hky—- =) (=1)k;
i

For nice spaces and decompositions, this is independent of the
exact choice of decomposition!
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The Subarrangement A*

For any x € L(A), define the subarrangement A* by
A={xNH|He Aand xNH# B, xNH# X}

AX C x
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Proving the Theorem

By decomposing x as a single dim(x)-dimensional cell, we have

X() = S (1) = (—1)dme

A*is a decomposition that we can use to compute x(x).

r(A*) is the number of dim(x)-dimensional cells that make up
X.

To count all cells of all dimensions, sum over t > x (cells t C x).

So we also have

X(9) = (- 1k = 30 (~ 1) Or(al

i t>x
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Proving the Theorem
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Proving the Theorem

For any x € L(A), by computing x(x) in two ways we have that

(_1)dim(x) _ Z(_ndim(t)r(ﬂt)

t>x

By Mobius inversion we get

( dlm(X ZM X, t dlm(t)

t>x
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Proving the Theorem

We want to know r(A) = r(A%"), so set x = R" to get

(_1)dim(R”)r(A) _ Z N(an t)(—'l)dim(t)

t>Rn

But dim(R") =nandt>R"isall t € L(A) since R" is the
minimal element. Substituting and rearranging gives

)= (1" 3 w(R (=10,

tel(A)
which by definition means
r(A) = (=1)"pa(=1),
proving the theorem!
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