Yes, It Can (Theoretically) Run Doom — Magic: The Gathering is Turing Complete

Max Orchard

October 27, 2023

Max Orchard

MTG is Turing Complete

October 27, 2023 1 / 33

Disclaimer

ax 🛛		

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

• I have never played Magic: The Gathering

э

イロト イヨト イヨト イヨト

- I have never played Magic: The Gathering
- I have never studied Turing completeness or Turing machines

< □ > < 同 > < 回 > < 回 > < 回 >

- I have never played Magic: The Gathering
- I have never studied Turing completeness or Turing machines
- I have never studied computational complexity

A (1) < A (1) < A (1)</p>

- I have never played Magic: The Gathering
- I have never studied Turing completeness or Turing machines
- I have never studied computational complexity
- While this talk would probably suit UQCS better, I claim it's a Maths Talk because MATH3306 (which I have never taken) discusses Turing machines

- 4回 ト 4 日 ト 4 日

Magic: The Gathering (MTG) is a famously complicated trading card game.

3

< □ > < 同 > < 回 > < 回 > < 回 >

Magic: The Gathering (MTG) is a famously complicated trading card game.

Formally, it is a two-player zero-sum stochastic game with imperfect information.

< □ > < 同 > < 回 > < 回 > < 回 >

Magic: The Gathering (MTG) is a famously complicated trading card game.

Formally, it is a two-player zero-sum stochastic game with imperfect information.

Players build decks of at least 60 cards (out of a total of more than 27000 distinct cards), and play against opponents who have their own unique deck.

< □ > < □ > < □ > < □ > < □ > < □ >

While MTG is normally about summoning creatures and casting spells in fantasy combat, we will instead be studying the computational complexity of MTG by building an in-game computer^{*} with a tournament-regulation deck.

< □ > < □ > < □ > < □ > < □ > < □ >

While MTG is normally about summoning creatures and casting spells in fantasy combat, we will instead be studying the computational complexity of MTG by building an in-game computer* with a tournament-regulation deck.

Theorem

In MTG, the problem of finding the optimal move in a given game state is undecidable.

・ 同 ト ・ ヨ ト ・ ヨ

While MTG is normally about summoning creatures and casting spells in fantasy combat, we will instead be studying the computational complexity of MTG by building an in-game computer* with a tournament-regulation deck.

Theorem

In MTG, the problem of finding the optimal move in a given game state is undecidable.

In contrast, no other real-world game is known to be harder than NP.

< □ > < □ > < □ > < □ > < □ > < □ >

While MTG is normally about summoning creatures and casting spells in fantasy combat, we will instead be studying the computational complexity of MTG by building an in-game computer* with a tournament-regulation deck.

Theorem

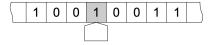
In MTG, the problem of finding the optimal move in a given game state is undecidable.

In contrast, no other real-world game is known to be harder than NP.

* we really mean implementing a Turing machine

< □ > < □ > < □ > < □ > < □ > < □ >

A *Turing machine* is simplistic abstract model of computation. It consists of four main components:


< □ > < 同 > < 回 > < 回 > < 回 >

A *Turing machine* is simplistic abstract model of computation. It consists of four main components:

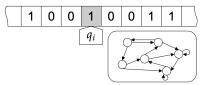
• A *tape*, consisting of a sequence of discrete *cells*. Each cell contains a symbol from some finite alphabet, and the tape extends indefinitely to the left and right.

A *Turing machine* is simplistic abstract model of computation. It consists of four main components:

A head that is positioned over some cell (the current cell). It can read a symbol from and write a symbol to that cell.

4 1 1 1

A *Turing machine* is simplistic abstract model of computation. It consists of four main components:


A state register that stores the current "state" (of finitely many) that the Turing machine is in.

Max Orchard

(4) (E) (E)

A *Turing machine* is simplistic abstract model of computation. It consists of four main components:

- A (finite) state table that, given the current state and current cell, will cause the Turing machine to do, in sequence (potentially skipping some steps):
 - write a symbol to the current cell
 - Ø move the head left or right one cell
 - S change the current state

Though conceptually simple, a Turing machine is capable of executing any program a real computer can execute. In fact, a Turing machine's indefinite memory makes it very powerful!

< □ > < 同 > < 回 > < 回 > < 回 >

Though conceptually simple, a Turing machine is capable of executing any program a real computer can execute. In fact, a Turing machine's indefinite memory makes it very powerful!

Unfortunately, this indefinite memory makes implementing real-life Turing machines difficult. A workaround is to initialise the tape with finite length, and then arbitrarily increase the tape length when necessary.

< □ > < □ > < □ > < □ > < □ > < □ >

Though conceptually simple, a Turing machine is capable of executing any program a real computer can execute. In fact, a Turing machine's indefinite memory makes it very powerful!

Unfortunately, this indefinite memory makes implementing real-life Turing machines difficult. A workaround is to initialise the tape with finite length, and then arbitrarily increase the tape length when necessary.

A computational model is *Turing complete* if it can simulate a Turing machine. Almost all programming languages are Turing complete, as well as some other pieces of software

イロト イボト イヨト イヨト

Though conceptually simple, a Turing machine is capable of executing any program a real computer can execute. In fact, a Turing machine's indefinite memory makes it very powerful!

Unfortunately, this indefinite memory makes implementing real-life Turing machines difficult. A workaround is to initialise the tape with finite length, and then arbitrarily increase the tape length when necessary.

A computational model is *Turing complete* if it can simulate a Turing machine. Almost all programming languages are Turing complete, as well as some other pieces of software (e.g. Microsoft PowerPoint,

イロト イボト イヨト イヨト

Though conceptually simple, a Turing machine is capable of executing any program a real computer can execute. In fact, a Turing machine's indefinite memory makes it very powerful!

Unfortunately, this indefinite memory makes implementing real-life Turing machines difficult. A workaround is to initialise the tape with finite length, and then arbitrarily increase the tape length when necessary.

A computational model is *Turing complete* if it can simulate a Turing machine. Almost all programming languages are Turing complete, as well as some other pieces of software (e.g. Microsoft PowerPoint, Minecraft,

イロト イボト イヨト イヨト

Though conceptually simple, a Turing machine is capable of executing any program a real computer can execute. In fact, a Turing machine's indefinite memory makes it very powerful!

Unfortunately, this indefinite memory makes implementing real-life Turing machines difficult. A workaround is to initialise the tape with finite length, and then arbitrarily increase the tape length when necessary.

A computational model is *Turing complete* if it can simulate a Turing machine. Almost all programming languages are Turing complete, as well as some other pieces of software (e.g. Microsoft PowerPoint, Minecraft, Cities: Skylines,

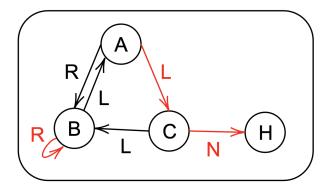
イロト 不得 トイラト イラト 一日

Though conceptually simple, a Turing machine is capable of executing any program a real computer can execute. In fact, a Turing machine's indefinite memory makes it very powerful!

Unfortunately, this indefinite memory makes implementing real-life Turing machines difficult. A workaround is to initialise the tape with finite length, and then arbitrarily increase the tape length when necessary.

A computational model is *Turing complete* if it can simulate a Turing machine. Almost all programming languages are Turing complete, as well as some other pieces of software (e.g. Microsoft PowerPoint, Minecraft, Cities: Skylines, Habbo Hotel).

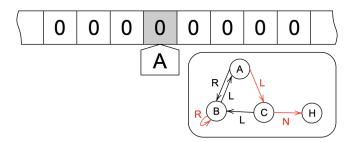
Consider the set of states $\{A, B, C, HALT\}$, and the state table given by


< □ > < 同 > < 回 > < 回 > < 回 >

Consider the set of states $\{A, B, C, HALT\}$, and the state table given by

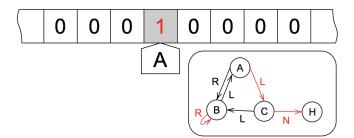
Current Co	0	1	
Current State	write	1	1
	move	R	L
	state	В	С
Current State	write	1	1
B	move	L	R
D	state	А	В
Current State	write	1	1
C	move	L	N
	state	В	HALT

A (1) > A (2) > A


Consider the set of states $\{A, B, C, HALT\}$, and the state table given by

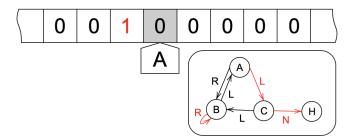
Initialise the tape with all cells being 0, and the state register at state A. Let's run the Turing machine!

< □ > < 同 > < 回 > < 回 > < 回 >


Initialise the tape with all cells being 0, and the state register at state A. Let's run the Turing machine!

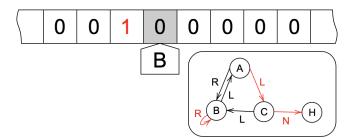
< ⊒ >

< A IN


Initialise the tape with all cells being 0, and the state register at state ${\rm A}.$ Let's run the Turing machine!

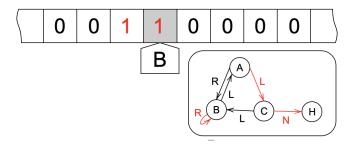
→ ∃ →

▲ 四 ▶


Initialise the tape with all cells being 0, and the state register at state A. Let's run the Turing machine!

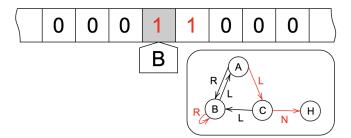
< ⊒ >

< A IN


Initialise the tape with all cells being 0, and the state register at state A. Let's run the Turing machine!

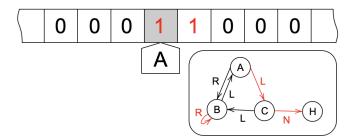
< ⊒ >

< A IN


Initialise the tape with all cells being 0, and the state register at state A. Let's run the Turing machine!

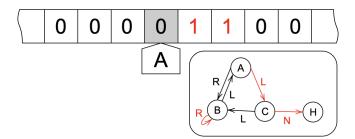
< A IN

- 3 ► ►


Initialise the tape with all cells being 0, and the state register at state A. Let's run the Turing machine!

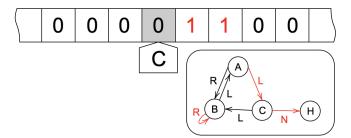
→ ∃ →

▲ 四 ▶


Initialise the tape with all cells being 0, and the state register at state ${\rm A}.$ Let's run the Turing machine!

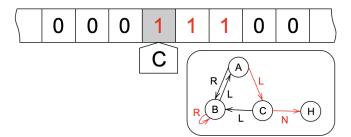
< ⊒ >

< A IN


Initialise the tape with all cells being 0, and the state register at state A. Let's run the Turing machine!

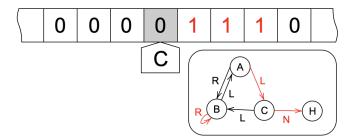
< ⊒ >

▲ 四 ▶


Initialise the tape with all cells being 0, and the state register at state A. Let's run the Turing machine!

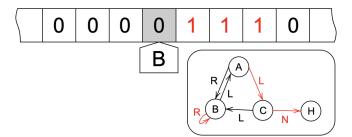
→ ∃ →

▲ 四 ▶


Initialise the tape with all cells being 0, and the state register at state ${\rm A}.$ Let's run the Turing machine!

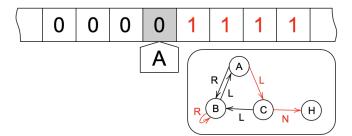
→ ∃ →

< 4[™] >


Initialise the tape with all cells being 0, and the state register at state A. Let's run the Turing machine!

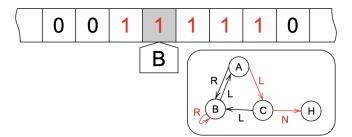
< ⊒ >

< A IN


Initialise the tape with all cells being 0, and the state register at state ${\rm A}.$ Let's run the Turing machine!

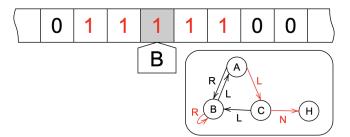
< ⊒ >

▲ 四 ▶


Initialise the tape with all cells being 0, and the state register at state ${\rm A}.$ Let's run the Turing machine!

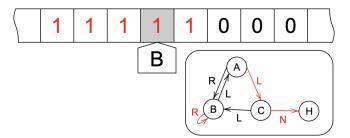
< A IN

< ∃ ►


Initialise the tape with all cells being 0, and the state register at state A. Let's run the Turing machine!

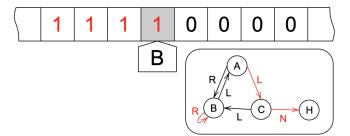
< ⊒ >

▲ 四 ▶


Initialise the tape with all cells being 0, and the state register at state ${\rm A}.$ Let's run the Turing machine!

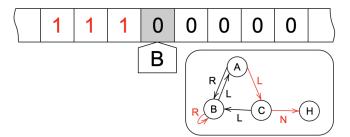
→ ∃ →

▲ 四 ▶


Initialise the tape with all cells being 0, and the state register at state ${\rm A}.$ Let's run the Turing machine!

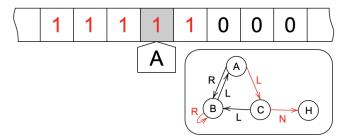
< A I

- 3 →


Initialise the tape with all cells being 0, and the state register at state ${\rm A}.$ Let's run the Turing machine!

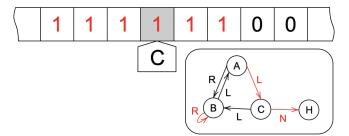
→ ∃ →

▲ 四 ▶


Initialise the tape with all cells being 0, and the state register at state ${\rm A}.$ Let's run the Turing machine!

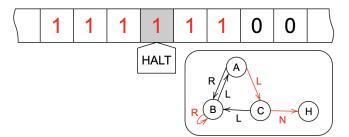
→ ∃ →

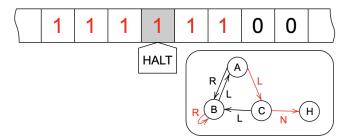
< 4[™] >


Initialise the tape with all cells being 0, and the state register at state ${\rm A}.$ Let's run the Turing machine!

< A I

- 3 →

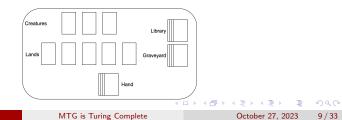

Initialise the tape with all cells being 0, and the state register at state A. Let's run the Turing machine!


< A I

< ∃ ►

Initialise the tape with all cells being 0, and the state register at state ${\rm A}.$ Let's run the Turing machine!

Initialise the tape with all cells being 0, and the state register at state ${\rm A}.$ Let's run the Turing machine!

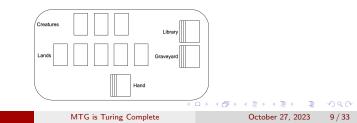


This is known as a 3-state busy beaver.

Max Orchard

Back to MTG

Each player has a deck of at least 60 cards, which they shuffle at the beginning of the game and place in their *library*. They then draw 7 cards, which form their *hand*.

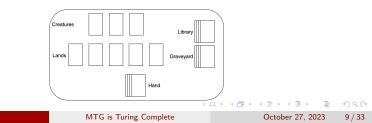

Max Orchard

Back to MTG

Max Orchard

Each player has a deck of at least 60 cards, which they shuffle at the beginning of the game and place in their *library*. They then draw 7 cards, which form their *hand*.

During a turn, players can play a range of cards, including *lands* (which generate *mana*, the main resource in MTG), *creatures* (which remain on the field and do battle), and other *spells* which have a variety of effects.


Back to MTG

Max Orchard

Each player has a deck of at least 60 cards, which they shuffle at the beginning of the game and place in their *library*. They then draw 7 cards, which form their *hand*.

During a turn, players can play a range of cards, including *lands* (which generate *mana*, the main resource in MTG), *creatures* (which remain on the field and do battle), and other *spells* which have a variety of effects.

When a card is removed from the field (e.g. a creature dies), it moves to the *graveyard* and is out of play.

Creature Cards

Creatures are *permanents*, that is they stay on the field after they are cast.

イロト 不得 トイヨト イヨト 二日

Sorcery Cards

Sorceries are spells that have an immediate effect when cast, and are removed from play once their effect resolves.

Max Orchard

MTG is Turing Complete

October 27, 2023 11 / 33

イロト 不得 トイヨト イヨト 二日

Computability Concerns

The issue of computability immediately arises. Consider the following situation: each player controls **Lich**, **Transcendence**, and **Laboratory Maniac**.

< □ > < □ > < □ > < □ > < □ > < □ >

Computability Concerns

The issue of computability immediately arises. Consider the following situation: each player controls **Lich**, **Transcendence**, and **Laboratory Maniac**.

One player then casts Menacing Ogre.

MTG is Turing Complete

October 27, 2023 12 / 33

• • • • • • • • • • • •

Forced Moves

The previous example describes another problem — MTG is in general non-deterministic.

3

A D N A B N A B N A B N

Forced Moves

The previous example describes another problem — MTG is in general non-deterministic.

For this reason, the Turing machine will be constructed so that execution happens using forced moves only, so that a player can't decide to stop performing the computation simply because they feel like it.

< □ > < □ > < □ > < □ > < □ > < □ >

Constructing the Turing Machine

This game of MTG will be played between Gary and Rupert.

Max		

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Constructing the Turing Machine

This game of MTG will be played between Gary and Rupert.

Each component of the Turing machine will be represented by different types of cards or actions that Gary and Rupert control/take.

< □ > < 同 > < 三 > < 三 >

Constructing the Turing Machine

This game of MTG will be played between Gary and Rupert.

Each component of the Turing machine will be represented by different types of cards or actions that Gary and Rupert control/take.

We will be constructing the "Rogozhin (2, 18) universal Turing machine", which is able to encode any Turing machine using 2 states and 18 symbols (this is complicated and I don't fully understand the details, but we'll go along with it).

< ロ > < 同 > < 回 > < 回 > < 回 > <

MTG has "token" creatures that can be created from spell effects, and are not represented by any specific card. We will use tokens to represent the cells of the tape, with the creature type representing the symbol.

(日) (四) (日) (日) (日)

MTG has "token" creatures that can be created from spell effects, and are not represented by any specific card. We will use tokens to represent the cells of the tape, with the creature type representing the symbol.

MTG has no concept of adjacency. All creatures in play are simply lumped together into a multiset (or bag). This presents a problem — how do we encode the position of cells with respect to the head?

< □ > < □ > < □ > < □ > < □ > < □ >

We do this by using colours to represent which side of the head a cell is on (white for left, green for right), and power/toughness to represent distance from the head.

We do this by using colours to represent which side of the head a cell is on (white for left, green for right), and power/toughness to represent distance from the head.

These tokens will be controlled by Rupert, except for the most recently created token which will be controlled by Gary.

・ 同 ト ・ ヨ ト ・ ヨ

Head

Reading the current cell will be done by Gary casting Infest.

ax		

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Head

Reading the current cell will be done by Gary casting Infest.

This will kill the unique 2/2 token (the current cell), "reading" it. The state register will detect this, and create a new 2/2 token, "writing" a new symbol to the cell.

イロト 不得 トイラト イラト 一日

State Table

The state table will be encoded using **Rotlung Reanimator** and **Xathrid Necromancer** cards.

October 27, 2023 18 / 33

イロト 不得下 イヨト イヨト 二日

State Table

The state table will be encoded using **Rotlung Reanimator** and **Xathrid Necromancer** cards.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

These cards detect when a specific creature type dies, and creates a new token.

State Table

The state table will be encoded using **Rotlung Reanimator** and **Xathrid Necromancer** cards.

These cards detect when a specific creature type dies, and creates a new token.

Rotlung Reanimator will be used to keep the current state, and **Xathrid Necromancer** to change state (i.e. the "tapped" state of the tokens).

Max Orchard

MTG is Turing Complete

State Table

We can edit the card text of **Rotlung Reanimator** and **Xathrid Necromancer** using **Artificial Evolution** and **Glamerdye**.

イロト 不得 トイヨト イヨト 二日

State Table

We can edit the card text of **Rotlung Reanimator** and **Xathrid Necromancer** using **Artificial Evolution** and **Glamerdye**.

イロト イヨト イヨト ・

This effectively means we have cards that say "If <creature type 1> dies, create a 2/2 <colour> <creature type 2>", which encode both the write and move steps in the state table.

State Register

To change state, we use a game mechanic called *phasing*.

- 2

イロト イボト イヨト イヨト

State Register

To change state, we use a game mechanic called *phasing*.

Phasing cards that a player controls alternate between "phased in" and "phased out" at the start of their turn. A phased out card is treated as though it doesn't exist. For this reason, a computation step will take 4 turns if we are not changing states, and 3 turns otherwise.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

State Register

To change state, we use a game mechanic called *phasing*.

Phasing cards that a player controls alternate between "phased in" and "phased out" at the start of their turn. A phased out card is treated as though it doesn't exist. For this reason, a computation step will take 4 turns if we are not changing states, and 3 turns otherwise.

We grant phasing to creatures by using Cloak of Invisibility.

MTG is Turing Complete

4 3 4 3 4 3 4

October 27, 2023

20/33

Let's walk through a computational step in the (2, 18) UTM. The outline of a computational step is:

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let's walk through a computational step in the (2, 18) UTM. The outline of a computational step is:

Gary casts Infest

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let's walk through a computational step in the (2, 18) UTM. The outline of a computational step is:

- Gary casts Infest
- Gary casts Cleansing Beam, which grants +2/+2 to the side of the tape we are moving away from

Let's walk through a computational step in the (2, 18) UTM. The outline of a computational step is:

- Gary casts Infest
- Gary casts Cleansing Beam, which grants +2/+2 to the side of the tape we are moving away from
- **③** Gary casts **Coalition Victory** if we are not changing state

< □ > < 同 > < 三 > < 三 >

Let's walk through a computational step in the (2, 18) UTM. The outline of a computational step is:

- Gary casts Infest
- Gary casts Cleansing Beam, which grants +2/+2 to the side of the tape we are moving away from
- **③** Gary casts **Coalition Victory** if we are not changing state
- Gary casts **Soul Snuffers**, which grants -1/-1 to all creatures

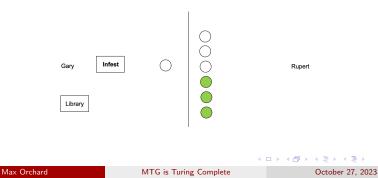
Let's walk through a computational step in the (2, 18) UTM. The outline of a computational step is:

- Gary casts Infest
- Gary casts Cleansing Beam, which grants +2/+2 to the side of the tape we are moving away from
- **③** Gary casts **Coalition Victory** if we are not changing state
- Gary casts **Soul Snuffers**, which grants -1/-1 to all creatures
- Supert does nothing

Initial State

At the start of a computation step, Gary has one card in his hand, **Infest**. His library consists of **Cleansing Beam**, **Coalition Victory**, and **Soul Snuffers** in order.

Initial State


At the start of a computation step, Gary has one card in his hand, Infest. His library consists of Cleansing Beam, Coalition Victory, and Soul Snuffers in order.

The UTM has its machinery cards in place (**Rotlung Reanimator**, **Cloak** of **Invisibility**, etc.), and the tape has been initialised.

Initial State

At the start of a computation step, Gary has one card in his hand, Infest. His library consists of Cleansing Beam, Coalition Victory, and Soul Snuffers in order.

The UTM has its machinery cards in place (**Rotlung Reanimator**, **Cloak** of **Invisibility**, etc.), and the tape has been initialised.

22 / 33

Casting Spells

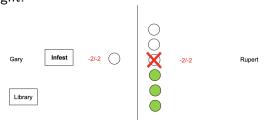
Rupert controls **Wild Evocation**, which forces Gary to play the only card in his hand.

Gary controls **Wheel of Sun and Moon**, which causes these cards to be recycled into his library. After Gary plays his card, he draws the next one in his library.

There are cards in play preventing players from taking any other action.

Max Orchard

MTG is Turing Complete


October 27, 2023 23 / 33

Gary is forced to cast **Infest**, performing the read/write step. The new token's colour represents the direction the tape will move — white for left and green for right.

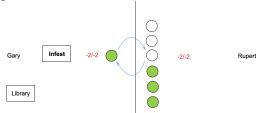
(日) (四) (日) (日) (日)

Max


Gary is forced to cast **Infest**, performing the read/write step. The new token's colour represents the direction the tape will move — white for left and green for right.

Orchard MTG is Turing Complete

October 27, 2023 24 / 33


Gary is forced to cast **Infest**, performing the read/write step. The new token's colour represents the direction the tape will move — white for left and green for right.

N /	ax	\sim			
101	ax :	υ	rc	nar	u

A (1) > A (2) > A

Gary is forced to cast **Infest**, performing the read/write step. The new token's colour represents the direction the tape will move — white for left and green for right.

Gary controls **Illusory Gains**, which causes Gary to take control of the current cell and Rupert to take control of Gary's previous token.

Max	Orchard	

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Gary is forced to cast **Cleansing Beam**. There are cards in play to force Gary to target his own token (the current cell). Both players control **Vigor**, which instead *adds* power/toughness whenever damage is dealt.

イロト イポト イヨト イヨト 二日

Gary is forced to cast **Cleansing Beam**. There are cards in play to force Gary to target his own token (the current cell). Both players control **Vigor**, which instead *adds* power/toughness whenever damage is dealt.

Changing States?

If the state table determines that we are changing states, the token that is sent to Gary in Turn 1 is *tapped*. At the beginning of each turn, all tapped cards are *untapped*.

3

Changing States?

If the state table determines that we are changing states, the token that is sent to Gary in Turn 1 is *tapped*. At the beginning of each turn, all tapped cards are *untapped*.

This is detected by **Mesmeric Orb** at the start of Turn 2.

Changing States?

If the state table determines that we are changing states, the token that is sent to Gary in Turn 1 is *tapped*. At the beginning of each turn, all tapped cards are *untapped*.

This is detected by **Mesmeric Orb** at the start of Turn 2.

Mesmeric Orb causes **Coalition Victory** to be skipped! This shortens the number of turns in a computational step by one, changing the state. $_{\circ\circ\circ\circ}$

Max Orchard

MTG is Turing Complete

October 27, 2023 26 / 33

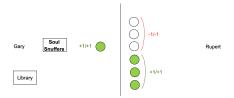
If **Mesmeric Orb** doesn't trigger, Turn 3 involves Gary being forced to cast **Coalition Victory**, which does nothing^{*}.

- 31

イロト イポト イヨト イヨト

If **Mesmeric Orb** doesn't trigger, Turn 3 involves Gary being forced to cast **Coalition Victory**, which does nothing^{*}.

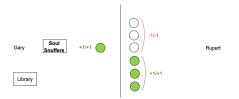
On the final turn, Gary is forced to cast **Soul Snuffers**. The card **Dread of Night** causes **Soul Snuffers** to immediately die, and all other creatures receive -1/-1.



イロト 不得 トイヨト イヨト 二日

Max Orchard

If **Mesmeric Orb** doesn't trigger, Turn 3 involves Gary being forced to cast **Coalition Victory**, which does nothing^{*}.


On the final turn, Gary is forced to cast **Soul Snuffers**. The card **Dread of Night** causes **Soul Snuffers** to immediately die, and all other creatures receive -1/-1.

Max	Orchard	
-----	---------	--

If **Mesmeric Orb** doesn't trigger, Turn 3 involves Gary being forced to cast **Coalition Victory**, which does nothing^{*}.

On the final turn, Gary is forced to cast **Soul Snuffers**. The card **Dread of Night** causes **Soul Snuffers** to immediately die, and all other creatures receive -1/-1.

We have completed one computational step. **Infest** is now in Gary's hand, and we are ready to start the next step.

	\sim			
Max	U	rc	ha	rc

October 27, 2023

28/33

Halting in this (2, 18) UTM is given by reading a certain symbol in a certain state. This is encoded by the state table (i.e. **Rotlung Reanimator**), and will result in a token being created with a specific colour and type (blue Assassin).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Halting in this (2, 18) UTM is given by reading a certain symbol in a certain state. This is encoded by the state table (i.e. **Rotlung Reanimator**), and will result in a token being created with a specific colour and type (blue Assassin).

Coalition Victory causes Gary to win the game immediately if he satisfies certain conditions.

Coalition Victory causes Gary to win the game immediately if he satisfies certain conditions.

Normally, Gary has everything needed except a blue creature, so this spell does nothing. However, if Gary gains control of a blue Assassin token on Turn 1, he now has everything he needs to win on Turn 3.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Coalition Victory causes Gary to win the game immediately if he satisfies certain conditions.

Normally, Gary has everything needed except a blue creature, so this spell does nothing. However, if Gary gains control of a blue Assassin token on Turn 1, he now has everything he needs to win on Turn 3.

If the machine does not halt, the game will be in an unbreakable deterministic infinite loop, which is a draw by rule.

Max Orchard

MTG is Turing Complete

October 27, 2023 30 / 33

The tape can be initialised so that it is arbitrarily long (just create more tokens).

э

(日) (四) (日) (日) (日)

The tape can be initialised so that it is arbitrarily long (just create more tokens).

• Fun fact: a simply unary adder program requires around 40 million tokens in its initial state.

The tape can be initialised so that it is arbitrarily long (just create more tokens).

• Fun fact: a simply unary adder program requires around 40 million tokens in its initial state.

However it is still finite! How do we add more cells on demand?

The tape can be initialised so that it is arbitrarily long (just create more tokens).

• Fun fact: a simply unary adder program requires around 40 million tokens in its initial state.

However it is still finite! How do we add more cells on demand?

We simply mark the ends of the tape with unused token types, and detect when they are read. A similar process to writing cells normally can be followed to create a new cell (i.e. with a **Rotlung Reanimator**).

イロト イポト イヨト イヨト

Tournament Legal Deck

This is the full tournament-legal deck of cards.

Card	Purpose		Card	Purpose	L	Card	Purpose
4 Ancient Tor	ib Bootstrap	1	Rotlung Reanimator	Logic processing	1	Xathrid Necromancer	Change state
4 Lotus Petal	Bootstrap	1	Cloak of Invisibility	Logic processing	1	Mesmeric Orb	Change state
4 Grim Mono	ith Infinite mana device	1	Infest	Logic processing	1	Coalition Victory	Halting device
4 Power Artif	ct Infinite mana device	1	Cleansing Beam	Logic processing	1	Prismatic Omen	Halting device
4 Gemstone A	rray Infinite mana device	1	Soul Snuffers	Logic processing	1	Choke	Halting device
4 Staff of Dor	nination Draw rest of deck	1	Illusory Gains	Logic processing	1	Recycle	Remove choices
1 Memnarch	Make token copies	1	Privileged Position	Logic processing	1	Blazing Archon	Remove choices
1 Stolen Ident	ity Make token copies	1	Steely Resolve	Logic processing	1	Djinn Illuminatus	Simplify setup
1 Artificial Ev	olution Edit cards	1	Vigor	Logic processing	1	Reito Lantern	Simplify setup
1 Olivia Volda	ren Edit cards	1	Fungus Sliver	Logic processing	1	Claws of Gix	Simplify setup
1 Glamerdye	Edit cards	1	Dread of Night	Logic processing	1	Riptide Replicator	Set up tape
1 Prismatic L	ce Edit cards	1	Wild Evocation	Forced play device	1	Capsize	Set up tape
1 Donate	Edit card control	1	Wheel of Sun and Moon	Forced play device	1	Karn Liberated	Cleanup after setup
1 Reality Ripp	le Edit card phase	1	Shared Triumph	Infinite tape device	1	Fathom Feeder	Cleanup after setup

э

A D N A B N A B N A B N

Tournament Legal Deck

This is the full tournament-legal deck of cards.

Card	Purpose	Card	Purpose	Card	Purpose
4 Ancient Tomb	Bootstrap	1 Rotlung Reanimator	Logic processing	1 Xathrid Necromancer	Change state
4 Lotus Petal	Bootstrap	1 Cloak of Invisibility	Logic processing	1 Mesmeric Orb	Change state
4 Grim Monolith	Infinite mana device	1 Infest	Logic processing	1 Coalition Victory	Halting device
4 Power Artifact	Infinite mana device	1 Cleansing Beam	Logic processing	1 Prismatic Omen	Halting device
4 Gemstone Array	Infinite mana device	1 Soul Snuffers	Logic processing	1 Choke	Halting device
4 Staff of Dominati	on Draw rest of deck	1 Illusory Gains	Logic processing	1 Recycle	Remove choices
1 Memnarch	Make token copies	1 Privileged Position	Logic processing	1 Blazing Archon	Remove choices
1 Stolen Identity	Make token copies	1 Steely Resolve	Logic processing	1 Djinn Illuminatus	Simplify setup
1 Artificial Evolution	on Edit cards	1 Vigor	Logic processing	1 Reito Lantern	Simplify setup
1 Olivia Voldaren	Edit cards	1 Fungus Sliver	Logic processing	1 Claws of Gix	Simplify setup
1 Glamerdye	Edit cards	1 Dread of Night	Logic processing	1 Riptide Replicator	Set up tape
1 Prismatic Lace	Edit cards	1 Wild Evocation	Forced play device	1 Capsize	Set up tape
1 Donate	Edit card control	1 Wheel of Sun and Moor	 Forced play device 	1 Karn Liberated	Cleanup after setup
1 Reality Ripple	Edit card phase	1 Shared Triumph	Infinite tape device	1 Fathom Feeder	Cleanup after setup

This deck costs about US\$2300 (unofficially).

Max Orchard

MTG is Turing Complete

October 27, 2023 32 / 33

(日) (四) (日) (日) (日)

References

- D. Aversa. On Rogozhin's Universal Turing Machines, 2019. Accessed from: https://www.davideaversa.it/blog/ rogozhin-universal-turing-machines/
- A. Churchill and S. Biderman and A. Herrick. *Magic: The Gathering is Turing Complete*. Digital preprint, arXiv:1904.09828 [cs.Al], 2019.
- Panard. *Churchill's Magic Turing Machine*, 2019. Accessed from: https://www.mtggoldfish.com/deck/1833177/
- Wizards of the Coast LLC. *How to Play Magic: The Gathering*, 2023. Accessed from: https://magic.wizards.com/en/how-to-play/.
- Card images from: https://scryfall.com/

イロト 不得 トイヨト イヨト 二日