exploring rubik's cube with group theory

 adriel efendy \& benjamin paulfun fact while we wait: the maximum number of moves required to solve the cube from any state, equal to the diameter of the cube group's Cayley graph, is 20.

about us

bpaul

cuber since 9 years ago
math / cs student since
12 weeks ago
adriel/peko
cuber since 5 years ago
metr. engg. / cs student since
3 years ago
math2301 sufficient, ask questions as we go!

what's a rubik's cube?

puzzle popular throughout 80s
invented by Ernő Rubik
first "scramble" by turning random sides, then "solve" by restoring solid colours on every face
move notation

slice moves

https://rubiks.fandom.com/wiki/Notation?file=Rubik\'s_cube_notation.jpg

https://chroniclesofcalculation.files.wordpress.com/2015/09/notation.png

https://sites.google.com/site/thethreelayers/Home/notation-guide/3x3x3/rotation.JPG

pieces

www.digiadzo.com/how-to-take-apart-a-rubik\%27s-cube-k.html

composition of moves

consider the moves generated by

$$
\{F, B, U, D, L, R\}
$$

\checkmark closure (trivial)

composition of moves

consider the moves generated by

$$
\{F, B, U, D, L, R\}
$$

\checkmark closure (trivial)
\checkmark inverses $A A^{\prime}=A^{\prime} A=1$
\checkmark associativity $A(B C)=(A B) C$
this forms a group! $\%$
(with composition as the group operation)
(this group acts on the cube)
$(R U)\left(U^{\prime} R^{\prime}\right)$

commutativity

no centres!

one approach to formalise

fix an orientation of the cube.
there are $6 \times 8=48$ non-centre stickers on the cube. define $\mathcal{G}=\langle\{F, B, U, D, L, R\}\rangle$, where $F=(\mathrm{UF}$ RF DF LF $)(\mathrm{FU}$ FR FD FL) (UFL RFU DFR LFD) (UFR RFD DFL LFU) (FLU FRU FRD FRL)
etc., expressing each as four-cycles.

$$
\mathcal{G} \leq S_{48}
$$

one approach to formalise

fix an orientation of the cube.
there are $6 \times 8=48$ non-centre stickers on the cube.
define $\mathcal{G}=\langle\{F, B, U, D, L, R\}\rangle$, where
$F=(\mathrm{UF}$ RF DF LF)(FU FR FD FL)
(UFL RFU DFR LFD) (UFR RFD DFL LFU) (FLU FRU FRD FRL)
simple to implement but difficult to reason about. we want more structure.
etc., expressing each as four-cycles.

$$
\mathcal{G} \leq S_{48}
$$

orientations

consider corner orientations, again fixing a cube orientation.

want to systematically enumerate these orientations.

orientations

orientation 0 if its U or D coloured sticker is at the highlighted positions.

eight corners, so we describe it as \mathbb{Z}_{3}^{8}, right?

orientations

a single face turn modifies orientation:

$$
1+2+1+2=6 \equiv 0(\bmod 3)
$$

sum of CO, modulo 3, is invariant under face turns.

orientations

three equivalence classes:

describe corner orientation as $\mathbb{Z}_{3}^{8} / \mathbb{Z}_{3} \cong \mathbb{Z}_{3}^{7}$

orientations

O if U/D colour at highlighted. if edge from E slice, look at F/B colour.

orientations

orientations

two equivalence classes:

$\mathbb{Z}_{2}^{12} / \mathbb{Z}_{2} \cong \mathbb{Z}_{2}^{11}$

permutations

permutation: movements of pieces, not considering orientation. also means an element of S_{n}.

permutations

4-cycle in edges (3 transpositions) 4-cycle in corners (3 transpositions)
parities of the edge and corner permutations must be equal!
$\left(\operatorname{sgn}\left(\sigma_{e}\right)+\operatorname{sgn}\left(\sigma_{c}\right)\right) \bmod 2$ is invariant under face turns

permutations

this sequence flips both edge and corner parities:

R U R' F' R U R' U' R' F R2 U' R' U' J perm, "cycle structure" 2e2c

permutations

describe subgroup of (cube) permutations by:

even corner perms
(A_{8}

permutations

describe subgroup of (cube) permutations by:

permutations

describe subgroup of (cube) permutations by:

for groups H and $K, H \rtimes K$ is the direct product $H \times K$ but with a new group operation involving conjugating $k \in K$. (ask us later if interested)

piece perspective

$$
\begin{aligned}
& \text { CO EO even even 2e2c } \\
& \mathcal{G} \cong\left(\mathbb{Z}_{3}^{7} \times \mathbb{Z}_{2}^{11}\right) \rtimes\left(\left(A_{8} \times A_{12}\right) \rtimes \mathbb{Z}_{2}\right) \\
& |\mathcal{G}|=3^{7} \cdot 2^{11} \cdot \frac{81}{2} \cdot \frac{121}{2} \cdot 2 \approx 4.33 \cdot 10^{19} \\
& \mathcal{G}^{*} \cong \mathbb{Z}_{3}^{8} \times \mathbb{Z}_{2}^{12} \times S_{8} \times S_{12} \\
& \left|\mathcal{G}^{*}\right|=3^{8} \cdot 2^{12} \cdot 8!\cdot 12!=12 \mid \mathcal{G}
\end{aligned}
$$

solvability

$$
\left|\mathcal{G}^{*}\right|=12|\mathcal{G}|
$$

1 in 12 states are solvable
check CO, EO, perm. parity to determine solvability

representatives of cosets of \mathcal{G} in \mathcal{G}^{*}

conjugates

the conjugate of X and Y is $[\mathrm{X}: \mathrm{Y}]=\mathrm{X} \mathrm{Y} \mathrm{X}^{\prime}$.
X "sets up" the cube to change the pieces that Y cycles.

conjugates

let Y be the sequence $\mathrm{R}^{\prime} \mathrm{F} \mathrm{R}^{\prime} \mathrm{B} 2 \mathrm{R} \mathrm{F}^{\prime} \mathrm{R}^{\prime} \mathrm{B} 2 \mathrm{R} 2$.

viewed from U face

how to make this?

conjugates

conjugates

need to restore initial setup with ($\left.F^{\prime}\right)^{\prime}=F$

conjugates

thm: $\alpha, \beta \in S_{n}$ are conjugates $\left(\exists \gamma \in S_{n}: \alpha=[\gamma: \beta]\right)$ iff they have the same cycle structure.

$$
\begin{aligned}
\alpha & =(123)(45)(67) \\
\beta & =(136)(24)(57) \\
\gamma & =(236)(457) \\
\alpha & =\gamma \beta \gamma^{-1}
\end{aligned}
$$

conjugates

cube "cycle structure" considers piece permutation and orientation

2e2c

Oe3c

3e3c
precise definition is beyond scope, but a similar result holds.
conjugation isn't enough!

commutators

the commutator of moves X and Y is $[\mathrm{X}, \mathrm{Y}]=\mathrm{X} \mathrm{Y} \mathrm{X}^{\prime} \mathrm{Y}^{\prime}$
let fix (X) be the fixed points of X, from piece or sticker perspective. let $\operatorname{mov}(X)$ be the complement of fix (X). defining $\operatorname{mov}(X, Y)=\operatorname{mov}(X) \cap \operatorname{mov}(Y)$, we have
pick X and Y to control this

$$
\operatorname{mov}([X, Y]) \subseteq \underbrace{\operatorname{mov}(X, Y)}_{\text {pieces moved by both }} \cup \underbrace{X^{\prime} \operatorname{mov}(X, Y) \cup Y^{\prime} \operatorname{mov}(X, Y)}_{\begin{array}{c}
\text { pieces that } X \text { and } Y \\
\text { take to those positions }
\end{array}}
$$

$\operatorname{mov}([X, Y]) \subseteq \operatorname{mov}(X, Y) \cup X^{\prime} \operatorname{mov}(X, Y) \cup Y^{\prime} \operatorname{mov}(X, Y)$

commutators
 [R U R', D]

$\operatorname{mov}([X, Y]) \subseteq \operatorname{mov}(X, Y) \cup X^{\prime} \operatorname{mov}(X, Y) \cup Y^{\prime} \operatorname{mov}(X, Y)$

commutators

[R U R', D]

$$
\operatorname{mov}([X, Y]) \subseteq \operatorname{mov}(X, Y) \cup X^{\prime} \operatorname{mov}(X, Y) \cup Y^{\prime} \operatorname{mov}(X, Y)
$$

commutators
 [R U R', D]

$\operatorname{mov}([X, Y]) \subseteq \operatorname{mov}(X, Y) \cup X^{\prime} \operatorname{mov}(X, Y) \cup Y^{\prime} \operatorname{mov}(X, Y)$

commutators [U', R' E' R]

X

ก

Y

$\operatorname{mov}([X, Y]) \subseteq \operatorname{mov}(X, Y) \cup X^{\prime} \operatorname{mov}(X, Y) \cup Y^{\prime} \operatorname{mov}(X, Y)$
commutators

X

[U', R' E' R]

II

```
mov}([X,Y])\subseteq\operatorname{mov}(X,Y)\cup\mp@subsup{X}{}{\prime}\operatorname{mov}(X,Y)\cup\mp@subsup{Y}{}{\prime}\operatorname{mov}(X,Y
```


BH/3-cycles/3-style method (good name)

solve cube by applying conjugated commutators that cycle 3 pieces to solve individual pieces.
every 3 cycle must involve some constant 'buffer' piece.
this is a blindfolded method! you can figure out and memorize the cycles needed without applying moves.

```
r= 㳖没 ... }\mp@subsup{\sigma}{n}{
\mp@subsup{\tau}{n}{}=(abc) a is the buffer, b and c are the other pieces
\tau
```

This method cannot fix 2e2c permutation parity! You must fix it separately

stuff we couldn't fit in

- $2 \times 2,4 \times 4$ cubes and larger
- centre parity, problems when reducing to $3 \times 3 \times 3$
- fewest moves competition
- NISS, insertions, domino reduction
- Thistlewaite's / Kociemba's algorithms
- reduce to successively smaller subgroups
- lookup table exploiting cube symmetry
- God's number
- computer-assisted coset enumeration of DR subgroup

resources

permutation puzzles textbook
some elementary subgroups of the cube group
cube group conjugacy classes (hard!)
theory of semidirect products (hardIII)
why we need semidirect product for the cube group

References

[1] $2 \times 2 \times 2$ Cayley graph:
https://miscellaneouscoder.wordpress.com/2014/07/28/working-with-rubiks-group-cycle-graphs/
[2] Rubik's Cube 3D model: https://grabcad.com/library/rubik-s-cube-36

