exploring rubik's cube with group theory

adriel efendy & benjamin paul

fun fact while we wait: the maximum number of moves required to solve the cube from any state, equal to the diameter of the cube group's Cayley graph, is **20**.

about us

cuber since 9 years ago

math / cs student since 12 weeks ago

cuber since 5 years ago metr. engg. / cs student since 3 years ago

math2301 sufficient, ask questions as we go!

what's a rubik's cube?

puzzle popular throughout 80s

invented by Ernő Rubik

first "scramble" by turning random sides, then "solve" by restoring solid colours on every face

move notation

slice moves

https://rubiks.fandom.com/wiki/Notation?file=Rubik%27s_cube_notation.jpg

https://chroniclesofcalculation.files.wordpress.com/2015/09/notation.png

https://sites.google.com/site/thethreelayers/Home/notation-guide/3x3x3/rotation.JPG

pieces

www.digiadzo.com/how-to-take-apart-a-rubik%2527s-cube-k.html

composition of moves

consider the moves generated by $\{F, B, U, D, L, R\}$ \checkmark closure (trivial)

composition of moves

consider the moves generated by $\{F,B,U,D,L,R\}$

V closure (trivial)

🖊 inverses 🗛 = A' A = I

associativity A (В с) = (А В) с

this forms a group! 😽

(with composition as the group operation) (this group *acts* on the cube)

(R U) (U' R')

RU

U R

no centres!

one approach to formalise

fix an orientation of the cube.

there are $6 \times 8 = 48$ non-centre stickers on the cube.

define $\mathcal{G}=\langle \{F,B,U,D,L,R\}
angle$, where

 $F = (\mathrm{UF} \ \mathrm{RF} \ \mathrm{DF} \ \mathrm{LF})(\mathrm{FU} \ \mathrm{FR} \ \mathrm{FD} \ \mathrm{FL}) \ (\mathrm{UFL} \ \mathrm{RFU} \ \mathrm{DFR} \ \mathrm{LFD}) \ (\mathrm{UFR} \ \mathrm{RFD} \ \mathrm{DFL} \ \mathrm{LFU}) \ (\mathrm{FLU} \ \mathrm{FRU} \ \mathrm{FRD} \ \mathrm{FRL})$

etc., expressing each as four-cycles.

 $\mathcal{G} \leq S_{48}$

one approach to formalise

fix an orientation of the cube.

there are $6 \times 8 = 48$ non-centre stickers on the cube.

define $\mathcal{G}=\langle \{F,B,U,D,L,R\}
angle$, where

 $F = (\mathrm{UF} \ \mathrm{RF} \ \mathrm{DF} \ \mathrm{LF})(\mathrm{FU} \ \mathrm{FR} \ \mathrm{FD} \ \mathrm{FL}) \ (\mathrm{UFL} \ \mathrm{RFU} \ \mathrm{DFR} \ \mathrm{LFD}) \ (\mathrm{UFR} \ \mathrm{RFD} \ \mathrm{DFL} \ \mathrm{LFU}) \ (\mathrm{FLU} \ \mathrm{FRU} \ \mathrm{FRD} \ \mathrm{FRL})$

simple to implement but difficult to reason about. we want more structure.

etc., expressing each as four-cycles.

 $\mathcal{G} \leq S_{48}$

consider corner **orientations**, again fixing a cube orientation.

want to systematically enumerate these orientations.

eight corners, so we describe it as \mathbb{Z}_3^8 , right?

a single face turn modifies orientation:

 $1+2+1+2=6\equiv 0 \pmod{3}$

sum of CO, modulo 3, is *invariant* under face turns.

three equivalence classes:

describe corner orientation as $\mathbb{Z}_3^8/\mathbb{Z}_3\cong\mathbb{Z}_3^7$

0 if U/D colour at highlighted. if edge from E slice, look at F/B colour.

E0 sum mod 2 *invariant*

F/B: flip 2 edges $0 \rightarrow 1$, 2 edges $1 \rightarrow 0$

else: flip 0 edges

two equivalence classes:

permutation: movements of pieces, not considering orientation. also means an element of S_n .

4-cycle in edges (3 transpositions) 4-cycle in corners (3 transpositions)

parities of the edge and corner permutations must be equal!

 $(\mathrm{sgn}(\sigma_e) + \mathrm{sgn}(\sigma_c)) mod 2$ is invariant under face turns

this sequence flips both edge and corner parities:

R U R' F' R U R' U' R' F R2 U' R' U' J perm, "cycle structure" 2e2c

describe subgroup of (cube) permutations by:

even corner perms

describe subgroup of (cube) permutations by:

even corner perms even edge perms $(A_8 imes A_{12})$

describe subgroup of (cube) permutations by:

for groups H and K, $H \rtimes K$ is the direct product $H \times K$ but with a new group operation involving conjugating $k \in K$. (ask us later if interested)

piece perspective

 $egin{aligned} extsf{CO} & extsf{EO} & extsf{even} & extsf{even} & extsf{EP} & extsf{2e2c} \ \mathcal{G} &\cong ig(\mathbb{Z}_3^7 imes \mathbb{Z}_2^{11}ig) imes ig((A_8 imes A_{12}ig) imes \mathbb{Z}_2ig) \ &|\mathcal{G}| &= 3^7 \cdot 2^{11} \cdot rac{8!}{2} \cdot rac{12!}{2} \cdot 2 pprox 4.33 \cdot 10^{19} \end{aligned}$

$$egin{aligned} \mathcal{G}^* &\cong \mathbb{Z}_3^8 imes \mathbb{Z}_2^{12} imes S_8 imes S_{12} \ &|\mathcal{G}^*| = 3^8 \cdot 2^{12} \cdot 8! \cdot 12! = 12|\mathcal{G} \end{aligned}$$

solvability

 $|\mathcal{G}^*| = 12|\mathcal{G}|$

1 in 12 states are solvable check CO, EO, perm. parity to

determine solvability

representatives of cosets of ${\mathcal G}$ in ${\mathcal G}^*$

the *conjugate* of X and Y is [X: Y] = X Y X'.

X "sets up" the cube to change the pieces that Y cycles.

let Y be the sequence R' F R' B2 R F' R' B2 R2.

viewed from U face

how to make this?

need to restore initial setup with (F')' = F

thm: $\alpha, \beta \in S_n$ are conjugates ($\exists \gamma \in S_n : \alpha = [\gamma : \beta]$) iff they have the same cycle structure.

$$egin{aligned} &lpha &= (1\,2\,3)(4\,5)(6\,7)\ η &= (1\,3\,6)(2\,4)(5\,7) \end{aligned}$$
 cycle structure (3, 2, 2) $&\gamma &= (2\,3\,6)(4\,5\,7)\ &lpha &= \gammaeta\gamma^{-1} \end{aligned}$

cube "cycle structure" considers piece permutation and orientation

precise definition is beyond scope, but a similar result holds.

conjugation isn't enough!

commutators

the *commutator* of moves X and Y is [X, Y] = X Y X' Y'

let fix(X) be the fixed points of X, from piece or sticker perspective. let mov(X) be the complement of fix(X).

defining $\mathrm{mov}(X,Y) = \mathrm{mov}(X) \cap \mathrm{mov}(Y)$, we have

$\mathrm{mov}([X,Y]) \subseteq \mathrm{mov}(X,Y) \cup X' \operatorname{mov}(X,Y) \cup Y' \operatorname{mov}(X,Y)$ commutators [R U R', D]

Y

$\mathrm{mov}([X,Y]) \subseteq \mathrm{mov}(X,Y) \cup X' \operatorname{mov}(X,Y) \cup Y' \operatorname{mov}(X,Y)$ commutators [R U R', D]

$\mathrm{mov}([X,Y]) \subseteq \mathrm{mov}(X,Y) \cup X' \operatorname{mov}(X,Y) \cup Y' \operatorname{mov}(X,Y)$ commutators [R U R', D]

Y

$\mathrm{mov}([X,Y]) \subseteq \mathrm{mov}(X,Y) \cup X' \,\mathrm{mov}(X,Y) \cup Y' \,\mathrm{mov}(X,Y)$

$\mathrm{mov}([X,Y]) \subseteq \mathrm{mov}(X,Y) \cup X' \,\mathrm{mov}(X,Y) \cup Y' \,\mathrm{mov}(X,Y)$

$\overline{\mathrm{mov}([X,Y])} \subseteq \mathrm{mov}(X,Y) \cup X' \, \mathrm{mov}(X,Y) \cup Y' \, \mathrm{mov}(X,Y)$

[U', R' E' R]

commutators

X

Y

BH/3-cycles/3-style method (good name)

solve cube by applying conjugated commutators that cycle 3 pieces to solve individual pieces.

every 3 cycle must involve some constant 'buffer' piece.

this is a blindfolded method! you can figure out and memorize the cycles needed without applying moves.

$$r=\sigma_1\sigma_2\dots\sigma_n$$
 $au_n=(a\,b\,c)$ a is the buffer, b and c are the other pieces $au_1 au_2\dots au_n r=e$

<u>Example</u>

This method cannot fix 2e2c permutation parity! You must fix it separately

stuff we couldn't fit in

- 2x2, 4x4 cubes and larger
 - \circ centre parity, problems when reducing to 3x3x3
- fewest moves competition
 - NISS, insertions, domino reduction
- Thistlewaite's / Kociemba's algorithms
 - reduce to successively smaller subgroups
 - \circ $\$ lookup table exploiting cube symmetry
- God's number
 - computer-assisted coset enumeration of DR subgroup

resources

permutation puzzles textbook some elementary subgroups of the cube group cube group conjugacy classes (hard!) theory of semidirect products (hard!!!) why we need semidirect product for the cube group

References

[1] 2x2x2 Cayley graph:

https://miscellaneouscoder.wordpress.com/2014/07/28/working-with-rubiks-group-cycle-graphs/

[2] Rubik's Cube 3D model: <u>https://grabcad.com/library/rubik-s-cube-36</u>