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Setup

The Puzzle

Let {i , j , k} denote the standard basis for R3.

The cross product is defined on this basis by

i × i = j × j = k × k = 0,

i × j = k , j × k = i , k × i = j ,

j × i = −k, k × j = −i , i × k = −j ,

and extended to R3 × R3 using bilinearity.

We will only be looking at the cross product on {±i ,±j ,±k , 0}.
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Setup

The Puzzle

The cross product is not associative. For example,

(i × i)× j = 0× j = 0, i × (i × j) = i × k = −j .

This leads to a natural question: when are associated products equal?

Definition

An association is a fixed pattern of brackets.

Off-topic remark: the number of associations of n variables is equal to the
nth Catalan number. The sequence of Catalan numbers is

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, . . .

They grow fairly quickly!
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Setup

The Puzzle

Fix two associations L and R of variables X1, . . . ,Xn.

If we choose each Xi to be a vector from the set {i , j , k}, the result of
L(X1, . . . ,Xn) and R(X1, . . . ,Xn) will lie in {±i ,±j ,±k , 0}.

Goal

This is trivial. In order to make this interesting, we insist that
L(X1, . . . ,Xn) and R(X1, . . . ,Xn) are non-zero. If this is true, we call the
solution sharp.

Max Orchard An Unexpected Equivalence August 26, 2022 5 / 21



Setup

The Puzzle

Fix two associations L and R of variables X1, . . . ,Xn.

If we choose each Xi to be a vector from the set {i , j , k}, the result of
L(X1, . . . ,Xn) and R(X1, . . . ,Xn) will lie in {±i ,±j ,±k , 0}.

Goal

This is trivial. In order to make this interesting, we insist that
L(X1, . . . ,Xn) and R(X1, . . . ,Xn) are non-zero. If this is true, we call the
solution sharp.

Max Orchard An Unexpected Equivalence August 26, 2022 5 / 21



Setup

The Puzzle

Fix two associations L and R of variables X1, . . . ,Xn.

If we choose each Xi to be a vector from the set {i , j , k}, the result of
L(X1, . . . ,Xn) and R(X1, . . . ,Xn) will lie in {±i ,±j ,±k , 0}.

Goal

Find solutions to the equation L(X1, . . . ,Xn) = R(X1, . . . ,Xn).

This is trivial. In order to make this interesting, we insist that
L(X1, . . . ,Xn) and R(X1, . . . ,Xn) are non-zero. If this is true, we call the
solution sharp.

Max Orchard An Unexpected Equivalence August 26, 2022 5 / 21



Setup

The Puzzle

Fix two associations L and R of variables X1, . . . ,Xn.

If we choose each Xi to be a vector from the set {i , j , k}, the result of
L(X1, . . . ,Xn) and R(X1, . . . ,Xn) will lie in {±i ,±j ,±k , 0}.

Goal

Find solutions to the equation L(X1, . . . ,Xn) = R(X1, . . . ,Xn).

This is trivial.

In order to make this interesting, we insist that
L(X1, . . . ,Xn) and R(X1, . . . ,Xn) are non-zero. If this is true, we call the
solution sharp.

Max Orchard An Unexpected Equivalence August 26, 2022 5 / 21



Setup

The Puzzle

Fix two associations L and R of variables X1, . . . ,Xn.

If we choose each Xi to be a vector from the set {i , j , k}, the result of
L(X1, . . . ,Xn) and R(X1, . . . ,Xn) will lie in {±i ,±j ,±k , 0}.

Goal

Find solutions to the equation L(X1, . . . ,Xn) = R(X1, . . . ,Xn).

This is trivial. In order to make this interesting, we insist that
L(X1, . . . ,Xn) and R(X1, . . . ,Xn) are non-zero.

If this is true, we call the
solution sharp.

Max Orchard An Unexpected Equivalence August 26, 2022 5 / 21



Setup

The Puzzle

Fix two associations L and R of variables X1, . . . ,Xn.

If we choose each Xi to be a vector from the set {i , j , k}, the result of
L(X1, . . . ,Xn) and R(X1, . . . ,Xn) will lie in {±i ,±j ,±k , 0}.

Goal

Find solutions to the equation L(X1, . . . ,Xn) = R(X1, . . . ,Xn).

This is trivial. In order to make this interesting, we insist that
L(X1, . . . ,Xn) and R(X1, . . . ,Xn) are non-zero. If this is true, we call the
solution sharp.

Max Orchard An Unexpected Equivalence August 26, 2022 5 / 21



Setup

The Puzzle

Fix two associations L and R of variables X1, . . . ,Xn.

If we choose each Xi to be a vector from the set {i , j , k}, the result of
L(X1, . . . ,Xn) and R(X1, . . . ,Xn) will lie in {±i ,±j ,±k , 0}.

Goal

Find sharp solutions to the equation L(X1, . . . ,Xn) = R(X1, . . . ,Xn).

This is trivial. In order to make this interesting, we insist that
L(X1, . . . ,Xn) and R(X1, . . . ,Xn) are non-zero. If this is true, we call the
solution sharp.

Max Orchard An Unexpected Equivalence August 26, 2022 5 / 21



Setup

The Equivalence

We can always find a sharp solution for n = 3.

There are only two distinct
associations, given by

L(X1,X2,X3) = (X1 × X2)× X3, R(X1,X2,X3) = X1 × (X2 × X3).

X1 = i , X2 = k , X3 = i is a sharp solution to L = R, because

(i × k)× i = −j × i = k = i × j = i × (k × i).

Theorem (Kauffman)

The existence of a sharp solution to the equation L = R for any n ∈ Z+

and for all associations L,R of the variables X1, . . . ,Xn is equivalent to
the four colour theorem.
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The Four Colour Theorem

The Four Colour Theorem

Theorem (Four Colour Theorem)

Every simple planar graph can be vertex-coloured with four colours.
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The Four Colour Theorem

The Four Colour Theorem

Theorem (Four Colour Theorem)

Every bridgeless cubic planar graph can be face-coloured with four colours.
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The Four Colour Theorem

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring
problem.

Theorem

Every bridgeless cubic planar graph can be edge-coloured with three
colours.

This reformulation is equivalent to the four colour theorem.

Max Orchard An Unexpected Equivalence August 26, 2022 8 / 21



The Four Colour Theorem

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring
problem.

Theorem

Every bridgeless cubic planar graph can be edge-coloured with three
colours.

This reformulation is equivalent to the four colour theorem.

Max Orchard An Unexpected Equivalence August 26, 2022 8 / 21



The Four Colour Theorem

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring
problem.

Theorem

Every bridgeless cubic planar graph can be edge-coloured with three
colours.

This reformulation is equivalent to the four colour theorem.

Max Orchard An Unexpected Equivalence August 26, 2022 8 / 21



The Four Colour Theorem

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring
problem.

Theorem

Every bridgeless cubic planar graph can be edge-coloured with three
colours.

This reformulation is equivalent to the four colour theorem.

Max Orchard An Unexpected Equivalence August 26, 2022 8 / 21



The Four Colour Theorem

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring
problem.

Theorem

Every bridgeless cubic planar graph can be edge-coloured with three
colours.

This reformulation is equivalent to the four colour theorem.

00

01

10

11

11

Max Orchard An Unexpected Equivalence August 26, 2022 8 / 21



The Four Colour Theorem

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring
problem.

Theorem

Every bridgeless cubic planar graph can be edge-coloured with three
colours.

This reformulation is equivalent to the four colour theorem.

01

01

01
10

10

10
11

11

11

Max Orchard An Unexpected Equivalence August 26, 2022 8 / 21



The Four Colour Theorem

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring
problem.

Theorem

Every bridgeless cubic planar graph can be edge-coloured with three
colours.

This reformulation is equivalent to the four colour theorem.

Max Orchard An Unexpected Equivalence August 26, 2022 8 / 21



The Four Colour Theorem

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring
problem.

Theorem

Every bridgeless cubic planar graph can be edge-coloured with three
colours.

This reformulation is equivalent to the four colour theorem.

Max Orchard An Unexpected Equivalence August 26, 2022 8 / 21



The Four Colour Theorem

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring
problem.

Theorem

Every bridgeless cubic planar graph can be edge-coloured with three
colours.

This reformulation is equivalent to the four colour theorem.

Max Orchard An Unexpected Equivalence August 26, 2022 8 / 21



The Four Colour Theorem

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring
problem.

Theorem

Every bridgeless cubic planar graph can be edge-coloured with three
colours.

This reformulation is equivalent to the four colour theorem.

Max Orchard An Unexpected Equivalence August 26, 2022 8 / 21



The Four Colour Theorem

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring
problem.

Theorem

Every bridgeless cubic planar graph can be edge-coloured with three
colours.

This reformulation is equivalent to the four colour theorem.

Max Orchard An Unexpected Equivalence August 26, 2022 8 / 21



Association Colouring

From Association To Graph

Let L and R be two associations of X1, . . . ,Xn. We can construct a tree
from an association by pairing up each individual multiplication.

(X1 × X2)× (X3 × X4) X1 × ((X2 × X3)× X4)
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Association Colouring

From Association To Graph

Now, flip the tree for R horizontally (so there is no crossover). Pair up
corresponding leaves with an edge (representing that Xi in L is equal to Xi

in R), and pair up the roots with an edge (as we want L = R).

(X1 × X2)× (X3 × X4) X1 × ((X2 × X3)× X4)

By removing the leaf vertices, this forms a bridgeless cubic planar graph.
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Association Colouring

Sharp Solution =⇒ Four Colour Theorem

Suppose we have a sharp solution to L = R. We label the vertices with the
result of the cross product immediately above it, ignoring signs.

(i × j)× (k × j) = i × ((j × k)× j)
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Association Colouring

Sharp Solution =⇒ Four Colour Theorem

We can now obtain a Tait colouring, using the colour of the vertex at the
“top” of the edge.
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Association Colouring

Sharp Solution =⇒ Four Colour Theorem

Theorem

Given a sharp solution to L = R, we can obtain a Tait colouring of the
associated bridgeless cubic planar graph.

Proof.

Colour the graph as before. This is a 3-colouring as we have a sharp
solution (so the only possible options for the vertices are {±i ,±j ,±k})
and we are ignoring signs. It is a proper colouring due to the cyclic nature
of the cross product on {i , j , k} (ignoring signs).
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Association Colouring

Four Colour Theorem =⇒ Sharp Solution

Suppose we have a Tait colouring of the graph corresponding to L = R.
We can almost derive a sharp solution immediately, however we need to
ensure the signs match.
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Association Colouring

Sign Issues

Recall that the cross product is anti-commutative (i.e a× b = −(b × a)).

This means determining the sign is equivalent to determining the
orientation of colours at a vertex.

Because of this assignment, multiplying the labels for L’s tree will “give”
the sign of L(X1, . . . ,Xn), and similarly for R’s tree. This follows from
bilinearity.
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Association Colouring

Four Colour Theorem =⇒ Sharp Solution

We now label the vertices of our graph using the orientation of I , J,K .

As the tree for R is flipped, we must flip the labelling on the right.
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Association Colouring

Formations

A formation is a graph formed from exactly two edge colours.

As the
degree of each vertex in a formation is 2, a formation can be decomposed
into a product of cycles.

When two formations overlap, there are two different ways their edges can
interact.
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Association Colouring

Formations

A bounce occurs when both formations share an edge and the interior of
each formation is entirely disjoint, or one is contained inside the other.

Each bounce consists of a +i vertex and a −i vertex. Therefore, each
bounce contributes 1 to the complex product of the labels.
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Association Colouring

Formations

A crossing occurs when the interiors of both formations partially intersect.

Each crossing consists of a pair of +i vertices and a pair of −i vertices.
Therefore, each crossing contributes 1 to the complex product.

Lemma

The complex product of the labels in a Tait colouring is 1.
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Association Colouring

Four Colour Theorem =⇒ Sharp Solution

Theorem

Given a Tait colouring of the associated bridgeless cubic planar graph, we
can obtain a sharp solution to L = R.

Proof.

Let Z be the complex product for the tree T (L) of L, and W be the
complex product for the tree T (R) of R. We know that

ZW = 1 =⇒ Z = W .

Suppose e is the sign of L(X1, . . . ,Xn), and e ′ is the sign of
R(X1, . . . ,Xn). As both T (L) and T (R) have the same number of vertices
(say m), we have

Z = e(im), W = e ′(im).

Thus e = e ′, and we have a sharp solution to L = R.
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