An Unexpected Equivalence From A Silly Cross Product Puzzle

Max Orchard

August 26, 2022

Inspiration

A post on the r /math subreddit:

What are some of the most interesting equivalent statements in math that intrigue(d) you? submitted 28 days ago by Colver_4k Algebra

Inspiration

A post on the r /math subreddit:

What are some of the most interesting equivalent statements in math that intrigue(d) you? submitted 28 days ago by Colver_4k Algebra

A comment by u/Glinat:

[-] Glinat 247 points 28 days ago (s)
Okay it's a long one, and it's about cross product.

Inspiration

A post on the $r /$ math subreddit:

What are some of the most interesting equivalent statements in math that intrigue(d) you?
submitted 28 days ago by Colver_4k Algebra
A comment by u /Glinat:
[-] Glinat 247 points 28 days ago (5) 领
Okay it's a long one, and it's about cross product.

A paper by Kauffman:

journal of combinatorial theory, Series B 48, 145-154 (1990)

Communicated by the Managing Editors
Received July 14, 1987; revised July 4, 1988

The Puzzle

Let $\{i, j, k\}$ denote the standard basis for \mathbb{R}^{3}.

The Puzzle

Let $\{i, j, k\}$ denote the standard basis for \mathbb{R}^{3}.
The cross product is defined on this basis by

$$
\begin{aligned}
& i \times i=j \times j=k \times k=0, \\
& i \times j=k, \quad j \times k=i, \quad k \times i=j, \\
& j \times i=-k, \quad k \times j=-i, \quad i \times k=-j,
\end{aligned}
$$

and extended to $\mathbb{R}^{3} \times \mathbb{R}^{3}$ using bilinearity.

The Puzzle

Let $\{i, j, k\}$ denote the standard basis for \mathbb{R}^{3}.
The cross product is defined on this basis by

$$
\begin{aligned}
& i \times i=j \times j=k \times k=0, \\
& i \times j=k, \quad j \times k=i, \quad k \times i=j, \\
& j \times i=-k, \quad k \times j=-i, \quad i \times k=-j,
\end{aligned}
$$

and extended to $\mathbb{R}^{3} \times \mathbb{R}^{3}$ using bilinearity.
We will only be looking at the cross product on $\{ \pm i, \pm j, \pm k, 0\}$.

The Puzzle

The cross product is not associative. For example,

$$
(i \times i) \times j=0 \times j=0, \quad i \times(i \times j)=i \times k=-j
$$

The Puzzle

The cross product is not associative. For example,

$$
(i \times i) \times j=0 \times j=0, \quad i \times(i \times j)=i \times k=-j
$$

This leads to a natural question: when are associated products equal?

The Puzzle

The cross product is not associative. For example,

$$
(i \times i) \times j=0 \times j=0, \quad i \times(i \times j)=i \times k=-j
$$

This leads to a natural question: when are associated products equal?

Definition

An association is a fixed pattern of brackets.

The Puzzle

The cross product is not associative. For example,

$$
(i \times i) \times j=0 \times j=0, \quad i \times(i \times j)=i \times k=-j
$$

This leads to a natural question: when are associated products equal?

Definition

An association is a fixed pattern of brackets.

$$
{ }_{-} \times_{-} \times_{-} \quad \times_{-} \times{ }_{-}
$$

The Puzzle

The cross product is not associative. For example,

$$
(i \times i) \times j=0 \times j=0, \quad i \times(i \times j)=i \times k=-j
$$

This leads to a natural question: when are associated products equal?

Definition

An association is a fixed pattern of brackets.

$$
\left({ }_{-} \times{ }_{-}\right) \times{ }_{-} \quad{ }_{-} \times\left({ }_{-} \times{ }_{-}\right)
$$

The Puzzle

The cross product is not associative. For example,

$$
(i \times i) \times j=0 \times j=0, \quad i \times(i \times j)=i \times k=-j
$$

This leads to a natural question: when are associated products equal?

Definition

An association is a fixed pattern of brackets.

$$
\left(X_{1} \times X_{2}\right) \times X_{3} \quad X_{1} \times\left(X_{2} \times X_{3}\right)
$$

The Puzzle

The cross product is not associative. For example,

$$
(i \times i) \times j=0 \times j=0, \quad i \times(i \times j)=i \times k=-j
$$

This leads to a natural question: when are associated products equal?

Definition

An association is a fixed pattern of brackets.

$$
\left(X_{1} \times X_{2}\right) \times X_{3} \quad X_{1} \times\left(X_{2} \times X_{3}\right)
$$

Off-topic remark: the number of associations of n variables is equal to the $n^{\text {th }}$ Catalan number. The sequence of Catalan numbers is

$$
1,1,2,5,14,42,132,429,1430,4862,16796, \ldots
$$

They grow fairly quickly!

The Puzzle

Fix two associations L and R of variables X_{1}, \ldots, X_{n}.

The Puzzle

Fix two associations L and R of variables X_{1}, \ldots, X_{n}.
If we choose each X_{i} to be a vector from the set $\{i, j, k\}$, the result of $L\left(X_{1}, \ldots, X_{n}\right)$ and $R\left(X_{1}, \ldots, X_{n}\right)$ will lie in $\{ \pm i, \pm j, \pm k, 0\}$.

The Puzzle

Fix two associations L and R of variables X_{1}, \ldots, X_{n}.
If we choose each X_{i} to be a vector from the set $\{i, j, k\}$, the result of $L\left(X_{1}, \ldots, X_{n}\right)$ and $R\left(X_{1}, \ldots, X_{n}\right)$ will lie in $\{ \pm i, \pm j, \pm k, 0\}$.

Goal

Find solutions to the equation $L\left(X_{1}, \ldots, X_{n}\right)=R\left(X_{1}, \ldots, X_{n}\right)$.

The Puzzle

Fix two associations L and R of variables X_{1}, \ldots, X_{n}.
If we choose each X_{i} to be a vector from the set $\{i, j, k\}$, the result of $L\left(X_{1}, \ldots, X_{n}\right)$ and $R\left(X_{1}, \ldots, X_{n}\right)$ will lie in $\{ \pm i, \pm j, \pm k, 0\}$.

Goal

Find solutions to the equation $L\left(X_{1}, \ldots, X_{n}\right)=R\left(X_{1}, \ldots, X_{n}\right)$.

This is trivial.

The Puzzle

Fix two associations L and R of variables X_{1}, \ldots, X_{n}.
If we choose each X_{i} to be a vector from the set $\{i, j, k\}$, the result of $L\left(X_{1}, \ldots, X_{n}\right)$ and $R\left(X_{1}, \ldots, X_{n}\right)$ will lie in $\{ \pm i, \pm j, \pm k, 0\}$.

Goal

Find solutions to the equation $L\left(X_{1}, \ldots, X_{n}\right)=R\left(X_{1}, \ldots, X_{n}\right)$.

This is trivial. In order to make this interesting, we insist that $L\left(X_{1}, \ldots, X_{n}\right)$ and $R\left(X_{1}, \ldots, X_{n}\right)$ are non-zero.

The Puzzle

Fix two associations L and R of variables X_{1}, \ldots, X_{n}.
If we choose each X_{i} to be a vector from the set $\{i, j, k\}$, the result of $L\left(X_{1}, \ldots, X_{n}\right)$ and $R\left(X_{1}, \ldots, X_{n}\right)$ will lie in $\{ \pm i, \pm j, \pm k, 0\}$.

Goal

Find solutions to the equation $L\left(X_{1}, \ldots, X_{n}\right)=R\left(X_{1}, \ldots, X_{n}\right)$.

This is trivial. In order to make this interesting, we insist that $L\left(X_{1}, \ldots, X_{n}\right)$ and $R\left(X_{1}, \ldots, X_{n}\right)$ are non-zero. If this is true, we call the solution sharp.

The Puzzle

Fix two associations L and R of variables X_{1}, \ldots, X_{n}.
If we choose each X_{i} to be a vector from the set $\{i, j, k\}$, the result of $L\left(X_{1}, \ldots, X_{n}\right)$ and $R\left(X_{1}, \ldots, X_{n}\right)$ will lie in $\{ \pm i, \pm j, \pm k, 0\}$.

Goal

Find sharp solutions to the equation $L\left(X_{1}, \ldots, X_{n}\right)=R\left(X_{1}, \ldots, X_{n}\right)$.

This is trivial. In order to make this interesting, we insist that $L\left(X_{1}, \ldots, X_{n}\right)$ and $R\left(X_{1}, \ldots, X_{n}\right)$ are non-zero. If this is true, we call the solution sharp.

The Equivalence

We can always find a sharp solution for $n=3$.

The Equivalence

We can always find a sharp solution for $n=3$. There are only two distinct associations, given by

$$
L\left(X_{1}, X_{2}, X_{3}\right)=\left(X_{1} \times X_{2}\right) \times X_{3}, \quad R\left(X_{1}, X_{2}, X_{3}\right)=X_{1} \times\left(X_{2} \times X_{3}\right)
$$

The Equivalence

We can always find a sharp solution for $n=3$. There are only two distinct associations, given by

$$
L\left(X_{1}, X_{2}, X_{3}\right)=\left(X_{1} \times X_{2}\right) \times X_{3}, \quad R\left(X_{1}, X_{2}, X_{3}\right)=X_{1} \times\left(X_{2} \times X_{3}\right)
$$

$X_{1}=i, X_{2}=k, X_{3}=i$ is a sharp solution to $L=R$, because

$$
(i \times k) \times i=-j \times i=k=i \times j=i \times(k \times i) .
$$

The Equivalence

We can always find a sharp solution for $n=3$. There are only two distinct associations, given by

$$
L\left(X_{1}, X_{2}, X_{3}\right)=\left(X_{1} \times X_{2}\right) \times X_{3}, \quad R\left(X_{1}, X_{2}, X_{3}\right)=X_{1} \times\left(X_{2} \times X_{3}\right)
$$

$X_{1}=i, X_{2}=k, X_{3}=i$ is a sharp solution to $L=R$, because

$$
(i \times k) \times i=-j \times i=k=i \times j=i \times(k \times i)
$$

Theorem (Kauffman)

The existence of a sharp solution to the equation $L=R$ for any $n \in \mathbb{Z}^{+}$ and for all associations L, R of the variables X_{1}, \ldots, X_{n} is equivalent to

The Equivalence

We can always find a sharp solution for $n=3$. There are only two distinct associations, given by

$$
L\left(X_{1}, X_{2}, X_{3}\right)=\left(X_{1} \times X_{2}\right) \times X_{3}, \quad R\left(X_{1}, X_{2}, X_{3}\right)=X_{1} \times\left(X_{2} \times X_{3}\right)
$$

$X_{1}=i, X_{2}=k, X_{3}=i$ is a sharp solution to $L=R$, because

$$
(i \times k) \times i=-j \times i=k=i \times j=i \times(k \times i)
$$

Theorem (Kauffman)

The existence of a sharp solution to the equation $L=R$ for any $n \in \mathbb{Z}^{+}$ and for all associations L, R of the variables X_{1}, \ldots, X_{n} is equivalent to the four colour theorem.

The Four Colour Theorem

Theorem (Four Colour Theorem)

Every simple planar graph can be vertex-coloured with four colours.

The Four Colour Theorem

Theorem (Four Colour Theorem)

Every simple planar graph can be vertex-coloured with four colours.

The Four Colour Theorem

Theorem (Four Colour Theorem)

Every simple planar graph can be vertex-coloured with four colours.

The Four Colour Theorem

Theorem (Four Colour Theorem)

Every bridgeless cubic planar graph can be face-coloured with four colours.

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring problem.

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring problem.

Theorem
Every bridgeless cubic planar graph can be edge-coloured with three colours.

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring problem.

Theorem

Every bridgeless cubic planar graph can be edge-coloured with three colours.

This reformulation is equivalent to the four colour theorem.

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring problem.

Theorem

Every bridgeless cubic planar graph can be edge-coloured with three colours.

This reformulation is equivalent to the four colour theorem.

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring problem.

Theorem

Every bridgeless cubic planar graph can be edge-coloured with three colours.

This reformulation is equivalent to the four colour theorem.

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring problem.

Theorem

Every bridgeless cubic planar graph can be edge-coloured with three colours.

This reformulation is equivalent to the four colour theorem.

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring problem.

Theorem

Every bridgeless cubic planar graph can be edge-coloured with three colours.

This reformulation is equivalent to the four colour theorem.

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring problem.

Theorem

Every bridgeless cubic planar graph can be edge-coloured with three colours.

This reformulation is equivalent to the four colour theorem.

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring problem.

Theorem

Every bridgeless cubic planar graph can be edge-coloured with three colours.

This reformulation is equivalent to the four colour theorem.

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring problem.

Theorem

Every bridgeless cubic planar graph can be edge-coloured with three colours.

This reformulation is equivalent to the four colour theorem.

Tait Colouring

We can reformulate the four colour theorem into an edge-colouring problem.

Theorem

Every bridgeless cubic planar graph can be edge-coloured with three colours.

This reformulation is equivalent to the four colour theorem.

From Association To Graph

Let L and R be two associations of X_{1}, \ldots, X_{n}. We can construct a tree from an association by pairing up each individual multiplication.

From Association To Graph

Let L and R be two associations of X_{1}, \ldots, X_{n}. We can construct a tree from an association by pairing up each individual multiplication.

$$
\left(X_{1} \times X_{2}\right) \times\left(X_{3} \times X_{4}\right) \quad X_{1} \times\left(\left(X_{2} \times X_{3}\right) \times X_{4}\right)
$$

From Association To Graph

Now, flip the tree for R horizontally (so there is no crossover). Pair up corresponding leaves with an edge (representing that X_{i} in L is equal to X_{i} in R), and pair up the roots with an edge (as we want $L=R$).

$$
\left(X_{1} \times X_{2}\right) \times\left(X_{3} \times X_{4}\right) \quad X_{1} \times\left(\left(X_{2} \times X_{3}\right) \times X_{4}\right)
$$

From Association To Graph

Now, flip the tree for R horizontally (so there is no crossover). Pair up corresponding leaves with an edge (representing that X_{i} in L is equal to X_{i} in R), and pair up the roots with an edge (as we want $L=R$).

From Association To Graph

Now, flip the tree for R horizontally (so there is no crossover). Pair up corresponding leaves with an edge (representing that X_{i} in L is equal to X_{i} in R), and pair up the roots with an edge (as we want $L=R$).

From Association To Graph

Now, flip the tree for R horizontally (so there is no crossover). Pair up corresponding leaves with an edge (representing that X_{i} in L is equal to X_{i} in R), and pair up the roots with an edge (as we want $L=R$).

By removing the leaf vertices, this forms a bridgeless cubic planar graph.

Sharp Solution \Longrightarrow Four Colour Theorem

Suppose we have a sharp solution to $L=R$. We label the vertices with the result of the cross product immediately above it, ignoring signs.

Sharp Solution \Longrightarrow Four Colour Theorem

Suppose we have a sharp solution to $L=R$. We label the vertices with the result of the cross product immediately above it, ignoring signs.

$$
(i \times j) \times(k \times j)=i \times((j \times k) \times j)
$$

Sharp Solution \Longrightarrow Four Colour Theorem

Suppose we have a sharp solution to $L=R$. We label the vertices with the result of the cross product immediately above it, ignoring signs.

$$
(i \times j) \times(k \times j)=i \times((j \times k) \times j)
$$

Sharp Solution \Longrightarrow Four Colour Theorem

Suppose we have a sharp solution to $L=R$. We label the vertices with the result of the cross product immediately above it, ignoring signs.

$$
(i \times j) \times(k \times j)=i \times((j \times k) \times j)
$$

Sharp Solution \Longrightarrow Four Colour Theorem

Suppose we have a sharp solution to $L=R$. We label the vertices with the result of the cross product immediately above it, ignoring signs.

$$
(i \times j) \times(k \times j)=i \times((j \times k) \times j)
$$

Sharp Solution \Longrightarrow Four Colour Theorem

Suppose we have a sharp solution to $L=R$. We label the vertices with the result of the cross product immediately above it, ignoring signs.

$$
(i \times j) \times(k \times j)=i \times((j \times k) \times j)
$$

Sharp Solution \Longrightarrow Four Colour Theorem

We can now obtain a Tait colouring, using the colour of the vertex at the "top" of the edge.

Sharp Solution \Longrightarrow Four Colour Theorem

We can now obtain a Tait colouring, using the colour of the vertex at the "top" of the edge.

Sharp Solution \Longrightarrow Four Colour Theorem

We can now obtain a Tait colouring, using the colour of the vertex at the "top" of the edge.

Sharp Solution \Longrightarrow Four Colour Theorem

We can now obtain a Tait colouring, using the colour of the vertex at the "top" of the edge.

Sharp Solution \Longrightarrow Four Colour Theorem

Theorem

Given a sharp solution to $L=R$, we can obtain a Tait colouring of the associated bridgeless cubic planar graph.

Sharp Solution \Longrightarrow Four Colour Theorem

Theorem

Given a sharp solution to $L=R$, we can obtain a Tait colouring of the associated bridgeless cubic planar graph.

Proof.

Colour the graph as before.

Sharp Solution \Longrightarrow Four Colour Theorem

Theorem

Given a sharp solution to $L=R$, we can obtain a Tait colouring of the associated bridgeless cubic planar graph.

Proof.

Colour the graph as before. This is a 3-colouring as we have a sharp solution (so the only possible options for the vertices are $\{ \pm i, \pm j, \pm k\}$) and we are ignoring signs.

Sharp Solution \Longrightarrow Four Colour Theorem

Theorem

Given a sharp solution to $L=R$, we can obtain a Tait colouring of the associated bridgeless cubic planar graph.

Proof.

Colour the graph as before. This is a 3-colouring as we have a sharp solution (so the only possible options for the vertices are $\{ \pm i, \pm j, \pm k\}$) and we are ignoring signs. It is a proper colouring due to the cyclic nature of the cross product on $\{i, j, k\}$ (ignoring signs).

Four Colour Theorem \Longrightarrow Sharp Solution

Suppose we have a Tait colouring of the graph corresponding to $L=R$. We can almost derive a sharp solution immediately, however we need to ensure the signs match.

Four Colour Theorem \Longrightarrow Sharp Solution

Suppose we have a Tait colouring of the graph corresponding to $L=R$. We can almost derive a sharp solution immediately, however we need to ensure the signs match.

Four Colour Theorem \Longrightarrow Sharp Solution

Suppose we have a Tait colouring of the graph corresponding to $L=R$. We can almost derive a sharp solution immediately, however we need to ensure the signs match.

Sign Issues

Recall that the cross product is anti-commutative (i.e $a \times b=-(b \times a)$).

Sign Issues

Recall that the cross product is anti-commutative (i.e $a \times b=-(b \times a)$). This means determining the sign is equivalent to determining the orientation of colours at a vertex.

Sign Issues

Recall that the cross product is anti-commutative (i.e $a \times b=-(b \times a)$). This means determining the sign is equivalent to determining the orientation of colours at a vertex.

Sign Issues

Recall that the cross product is anti-commutative (i.e $a \times b=-(b \times a)$). This means determining the sign is equivalent to determining the orientation of colours at a vertex.

Sign Issues

Recall that the cross product is anti-commutative (i.e $a \times b=-(b \times a)$). This means determining the sign is equivalent to determining the orientation of colours at a vertex.

Sign Issues

Recall that the cross product is anti-commutative (i.e $a \times b=-(b \times a)$). This means determining the sign is equivalent to determining the orientation of colours at a vertex.

Because of this assignment, multiplying the labels for L's tree will "give" the sign of $L\left(X_{1}, \ldots, X_{n}\right)$, and similarly for R 's tree. This follows from bilinearity.

Four Colour Theorem \Longrightarrow Sharp Solution

We now label the vertices of our graph using the orientation of I, J, K.

Four Colour Theorem \Longrightarrow Sharp Solution

We now label the vertices of our graph using the orientation of I, J, K.

Four Colour Theorem \Longrightarrow Sharp Solution

We now label the vertices of our graph using the orientation of I, J, K.

As the tree for R is flipped, we must flip the labelling on the right.

Formations

A formation is a graph formed from exactly two edge colours.

Formations

A formation is a graph formed from exactly two edge colours. As the degree of each vertex in a formation is 2, a formation can be decomposed into a product of cycles.

Formations

A formation is a graph formed from exactly two edge colours. As the degree of each vertex in a formation is 2, a formation can be decomposed into a product of cycles.

Formations

A formation is a graph formed from exactly two edge colours. As the degree of each vertex in a formation is 2 , a formation can be decomposed into a product of cycles.

Formations

A formation is a graph formed from exactly two edge colours. As the degree of each vertex in a formation is 2 , a formation can be decomposed into a product of cycles.

When two formations overlap, there are two different ways their edges can interact.

Formations

A bounce occurs when both formations share an edge and the interior of each formation is entirely disjoint, or one is contained inside the other.

Formations

A bounce occurs when both formations share an edge and the interior of each formation is entirely disjoint, or one is contained inside the other.

Each bounce consists of a $+i$ vertex and a $-i$ vertex. Therefore, each bounce contributes 1 to the complex product of the labels.

Formations

A crossing occurs when the interiors of both formations partially intersect.

Formations

A crossing occurs when the interiors of both formations partially intersect.

Each crossing consists of a pair of $+i$ vertices and a pair of $-i$ vertices. Therefore, each crossing contributes 1 to the complex product.

Formations

A crossing occurs when the interiors of both formations partially intersect.

Each crossing consists of a pair of $+i$ vertices and a pair of $-i$ vertices. Therefore, each crossing contributes 1 to the complex product.

Lemma

The complex product of the labels in a Tait colouring is 1.

Four Colour Theorem \Longrightarrow Sharp Solution

Theorem
Given a Tait colouring of the associated bridgeless cubic planar graph, we can obtain a sharp solution to $L=R$.

Proof.

Four Colour Theorem \Longrightarrow Sharp Solution

Theorem

Given a Tait colouring of the associated bridgeless cubic planar graph, we can obtain a sharp solution to $L=R$.

Proof.

Let Z be the complex product for the tree $T(L)$ of L, and W be the complex product for the tree $T(R)$ of R.

Four Colour Theorem \Longrightarrow Sharp Solution

Theorem

Given a Tait colouring of the associated bridgeless cubic planar graph, we can obtain a sharp solution to $L=R$.

Proof.

Let Z be the complex product for the tree $T(L)$ of L, and W be the complex product for the tree $T(R)$ of R. We know that

$$
Z \bar{W}=1 \Longrightarrow Z=W
$$

Four Colour Theorem \Longrightarrow Sharp Solution

Theorem

Given a Tait colouring of the associated bridgeless cubic planar graph, we can obtain a sharp solution to $L=R$.

Proof.

Let Z be the complex product for the tree $T(L)$ of L, and W be the complex product for the tree $T(R)$ of R. We know that

$$
Z \bar{W}=1 \Longrightarrow Z=W
$$

Suppose e is the sign of $L\left(X_{1}, \ldots, X_{n}\right)$, and e^{\prime} is the sign of $R\left(X_{1}, \ldots, X_{n}\right)$.

Four Colour Theorem \Longrightarrow Sharp Solution

Theorem

Given a Tait colouring of the associated bridgeless cubic planar graph, we can obtain a sharp solution to $L=R$.

Proof.

Let Z be the complex product for the tree $T(L)$ of L, and W be the complex product for the tree $T(R)$ of R. We know that

$$
Z \bar{W}=1 \Longrightarrow Z=W
$$

Suppose e is the sign of $L\left(X_{1}, \ldots, X_{n}\right)$, and e^{\prime} is the sign of $R\left(X_{1}, \ldots, X_{n}\right)$. As both $T(L)$ and $T(R)$ have the same number of vertices (say m), we have

$$
Z=e\left(i^{m}\right), \quad W=e^{\prime}\left(i^{m}\right)
$$

Four Colour Theorem \Longrightarrow Sharp Solution

Theorem

Given a Tait colouring of the associated bridgeless cubic planar graph, we can obtain a sharp solution to $L=R$.

Proof.

Let Z be the complex product for the tree $T(L)$ of L, and W be the complex product for the tree $T(R)$ of R. We know that

$$
Z \bar{W}=1 \Longrightarrow Z=W
$$

Suppose e is the sign of $L\left(X_{1}, \ldots, X_{n}\right)$, and e^{\prime} is the sign of $R\left(X_{1}, \ldots, X_{n}\right)$. As both $T(L)$ and $T(R)$ have the same number of vertices (say m), we have

$$
Z=e\left(i^{m}\right), \quad W=e^{\prime}\left(i^{m}\right)
$$

Thus $e=e^{\prime}$, and we have a sharp solution to $L=R$.

References

- L. Kauffman. Map Coloring and the Vector Cross Product. Journal of Combinatorial Theory, Series B, 48(2):145-154, 1990.
- OEIS Foundation Inc. The Catalan numbers, Entry A000108 in The On-Line Encyclopedia of Integer Sequences, 2022. Accessed from: https://oeis.org/A000108.
- P. Rideout. Cross Products and the Four Color Theorem, 2020. Accessed from: https://prideout.net/blog/kauffman/kauffman.pdf.

