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Drums and the wave equation

Let Ω ⊂ R2 be a “drum”.
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Drums and the wave equation

Let Ω ⊂ R2 be a “drum”. Suppose u : Ω× R→ R is the height of the drumhead over time
(written u(x , t)). Then u (approximately) satisfies the wave equation

∂2u

∂t2
= ∆u. (1)

Here, ∆u := ∂2u
∂x2 + ∂2u

∂y2 . The drumhead is clamped at the boundary, so that u(x , t) = 0 for all
x ∈ ∂Ω and t ∈ R.
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Wave equation: Standing wave solutions

Drum: Ω ⊂ R2,

u : Ω× R→ R,
∂2u
∂t2 = ∆u,

u|∂Ω×R = 0.

Consider standing wave solutions of the form

u(x , t) = cos(
√
λt)v(x).

For λ > 0 and v : Ω→ R. Clearly v |∂Ω = 0.

0 =
∂2u

∂t2
(x , t)−∆u(x , t) = −λ cos(

√
λt)v(x)− cos(

√
λt)∆v(x) ⇐⇒ ∆v + λv = 0.

So v : Ω→ R is required to satisfy ∆v + λv = 0 (look familiar?).
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Studying the eigenvalue problem −∆v = λv (the one dimensional case)

Suppose Ω = (0, L) ⊂ R so v : (0, L)→ R. v(0) = v(L) = 0.

0 = ∆v + λv =
∂2v

∂x2
+ λv = v ′′ + λv .

This is an ODE, which we can solve ... v(x) = A sin(
√
λx) + B cos(

√
λx) (see MATH1052).

0 = v(0) = B, so v(x) = A sin(
√
λx).

0 = v(L) = A sin(
√
λL) =⇒

√
λL = nπ =⇒ λ =

n2π2

L2
, v(x) = sin(

nπ

L
x), n ∈ Z.

These are the harmonics of a string of length L. (Someone remind James to draw a picture).

Notice we can recover L from the eigenvalues. We can hear the length of a string!
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Studying the eigenvalue problem −∆v = λv (two dimensions)

Suppose n = 2, Ω = (0, L1)× (0, L2). Then 0 = ∆v + λv = ∂2v
∂x2 + ∂2v

∂y2 + λv .

Using separation of variables (i.e. writing v(x , y) = v1(x)v2(y)), we can conclude,

λ = λn,m := π2(
n2

L2
1

+
m2

L2
2

) and v(x , y) = vn,m(x , y) := sin(
nπ

L1
x) sin(

mπ

L2
y)

for some n,m ≥ 1.
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Studying the eigenvalue problem −∆v = λv (two dimensions)

Question: Can we hear the geometry of Ω = (0, L1)× (0, L2)?

Define N(λ) :=
∑

λn,m<λ
1 = # of eigenvalues smaller than λ.

Claim: limλ→∞
N(λ)
λ = Area(Ω)

4π

Observe: λn,m = π2(n
2

L2
1

+ m2

L2
2

) < λ ⇐⇒ n2

(
√
λ

L1
π

)2
+ m2

(
√
λ

L2
π

)2
< 1

So N(λ) = # of lattice points (n,m) ∈ N× N inside the ellipse x2

(
√
λ

L1
π

)2
+ y2

(
√
λ

L2
π

)2
= 1
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Studying the eigenvalue problem −∆v = λv (two dimensions)

N(λ) = # of lattice points (n,m) ∈ N× N inside the ellipse x2

(
√
λ

L1
π

)2
+ y2

(
√
λ

L2
π

)2
= 1

For large λ,

N(λ) ≈ Area(Ellipse)

4
= πλ

L1L2

4π2
= λ

Area(Ω)

4π
.
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Weyl’s law

Theorem (Weyl, 1912)

For any drum Ω ⊂ R2, N(λ) = λArea(Ω)
4π + o(λ) as λ→∞.

Upshot: We can hear the area of a drum!
Question: Can we hear more?

Conjecture (Weyl)

N(λ) = λArea(Ω)
4π −

√
λLength(∂Ω)

2π + o(
√
λ) as λ→∞.

What’s known:

True when error term replaced with O(
√
λ) (Seeley, 1978)

True when the set of periodic points of billiards has measure zero (whatever that
means...) (Ivrii, 1980).
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Inverse spectral problems

For a given drum Ω ⊂ R2, the eigenvalues of −∆ (for zero boundary conditions) form a
sequence

0 ≤ λ1 ≤ λ2 ≤ · · · → ∞.

This gives a function

Spec : {Drums Ω ⊂ R2} → {Positive increasing sequences approaching ∞}

defined by
Ω 7→ Spec(Ω) = {λn}∞n=1

Lots of questions to ask!!
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Inverse spectral problems

Can we find drums Ω1 6= Ω2 such that Spec(Ω1) = Spec(Ω2)? (Can we hear the shape of
a drum?)

If no: Are there any “spectrally lonely” drums? i.e. does there exist Ω ⊂ R2 such that
Spec(Ω) 6= Spec(Ω′) for ANY other drum Ω′ 6= Ω?

For which sequences {λn}∞n=1 can we find Ω ⊂ R2 such that Spec(Ω) = {λn}∞n=1?

Many other questions! Small deformations, Higher dimensions / Riemannian manifolds,
other operators, etc.
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Inverse spectral problems
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Spectrally Lonely drums

Let D = {(x , y) ∈ R2 : x2 + y2 ≤ 1} be the disk in R2. Its spectrum is well studied.

Theorem

For any drum Ω ⊂ R2 with smooth boundary, if Spec(Ω) = Spec(D), then Ω = D.

The disk is spectrally lonely amongst smooth drums.

James Stanfield Weyl’s law: When analysis informs geometry October 22, 2021 14 / 18



Spectrally Lonely drums

Let D = {(x , y) ∈ R2 : x2 + y2 ≤ 1} be the disk in R2. Its spectrum is well studied.

Theorem

For any drum Ω ⊂ R2 with smooth boundary, if Spec(Ω) = Spec(D), then Ω = D.

The disk is spectrally lonely amongst smooth drums.

James Stanfield Weyl’s law: When analysis informs geometry October 22, 2021 14 / 18



Spectrally Lonely drums

Let D = {(x , y) ∈ R2 : x2 + y2 ≤ 1} be the disk in R2. Its spectrum is well studied.

Theorem

For any drum Ω ⊂ R2 with smooth boundary, if Spec(Ω) = Spec(D), then Ω = D.

The disk is spectrally lonely amongst smooth drums.

James Stanfield Weyl’s law: When analysis informs geometry October 22, 2021 14 / 18



Spectrally Lonely drums

Let D = {(x , y) ∈ R2 : x2 + y2 ≤ 1} be the disk in R2. Its spectrum is well studied.

Theorem

For any drum Ω ⊂ R2 with smooth boundary, if Spec(Ω) = Spec(D), then Ω = D.

The disk is spectrally lonely amongst smooth drums.

James Stanfield Weyl’s law: When analysis informs geometry October 22, 2021 14 / 18



Theorem

For any drum Ω ⊂ R2 with smooth boundary, if Spec(Ω) = Spec(D), then Ω = D.

Proof.

Let {λn}∞n=1 = Spec(Ω). We consider the Heat Trace,

h(t) :=
∞∑
n=1

e−λnt = Tr e∆t

Then it is known that

h(t) = t−1 Area(Ω)

2π
− t−1/2 Length(∂Ω)√

2π
+ O(1), t → 0+.

Thus, Spec(Ω) = Spec(D) =⇒ Ω has the same area and perimeter as a disk.Actually the
only shape that can satisfy this condition is the disk itself (isoperimetric inequality).
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e−λnt = Tr e∆t

Then it is known that

h(t) = t−1 Area(Ω)

2π
− t−1/2 Length(∂Ω)√

2π
+ O(1), t → 0+.

Thus, Spec(Ω) = Spec(D) =⇒ Ω has the same area and perimeter as a disk.

Actually the
only shape that can satisfy this condition is the disk itself (isoperimetric inequality).
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Spectrally lonely drums

All known examples of drums with spectral partners are non-convex polygons.

There exist uncountably many spectrally determined (lonely) drums (Watanabe, 1999).
They are minimisers of the function Ω 7→

∫
∂Ω k2, subject to certain constraints.

k : ∂Ω→ R is the curvature of the boundary ∂Ω.

Ellipses with small eccentricity are spectrally determined (Hezari – Zelditch, 2019)

The problem is still open for general ellispes...
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More questions

Can we hear the shape of a drum among certain families (e.g. smooth, analytic, convex,
fixed # of corners, possessing symmetries, etc.)?

Can we hear the shape of a drum by striking it at different points?

Is the function Spec : {Ω ⊂ R2} → RN
+ continuous (In a reasonably defined sense)?
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Thank you for your attention!
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