Experimental Designs

Zoe Dann

April 28, 2024

~						
~	0	e	D	а	n	n

æ

• Weigh 8 different items with unreliable pan scales

< 3 >

- Weigh 8 different items with unreliable pan scales
- As few instances of measuring as possible
- As high an accuracy as possible

Unreliable?

• Each trial gives us a (independent) random variable w_i

э

Unreliable?

- Each trial gives us a (independent) random variable w_i
- Let the true mass of object *i* be θ_i

-477 ▶

э

Unreliable?

- Each trial gives us a (independent) random variable w_i
- Let the true mass of object *i* be θ_i
- Let the estimate of the mass of object i be $\hat{\theta}_i$

Naive Scheme

Left	Right	Result
1	-	w ₁
2	-	<i>W</i> ₂
3	-	W3
4	-	W4
5	-	W ₅
6	-	W ₆
7	-	W7
8	-	W ₈

イロト イヨト イヨト イヨト

Naive Scheme

Left	Right	Result
1	-	w ₁
2	-	<i>W</i> ₂
3	-	W3
4	-	W4
5	-	W5
6	-	W ₆
7	-	W7
8	-	W ₈

• 8 trials total • $\hat{\theta}_i = w_i$ • $\mu(\hat{\theta}_i) = \theta_i$ • $\operatorname{Var}(\hat{\theta}_i) = \sigma^2$

(a)

ill	Naive Scheme					
	Left	Right	Result			
	1	-	<i>w</i> ₁			
	2	-	W2			
	3	-	W3			
	4	-	W4			
	5	-	W5			
	6	-	W ₆			
	7	-	W ₇			
	8	-	W ₈			
	1	-	v_1			
	2	-	<i>V</i> 2			
	3	-	V3			
	4	-	<i>v</i> ₄			
	5	-	<i>v</i> 5			
	6	-	v ₆			
	7	-	V7			
	8	-	<i>V</i> 8			

St

٩	16 trials total
•	$\hat{\theta}_i = \frac{w_i + v_i}{2}$
٩	$\mu(\hat{\theta}_i) = \theta_i$
٩	$\operatorname{Var}(\hat{\theta}_i) = \frac{\sigma^2}{2}$

$$S = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

1248	3567
2358	1467
3468	1257
4578	1236
5618	2347
6728	1345
7138	2456

æ

6/1

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$S = \{1, 2, 3, 4, 5, 6, 7, 8\}$

1248	3567
2358	1467
3468	1257
4578	1236
5618	2347
6728	1345
7138	2456

• It can be verified that each triple occurs in exactly one cell

-

$S = \{1, 2, 3, 4, 5, 6, 7, 8\}$

1248	3567
2358	1467
3468	1257
4578	1236
5618	2347
6728	1345
7138	2456

• It can be verified that each triple occurs in exactly one cell

-

$S = \{1, 2, 3, 4, 5, 6, 7, 8\}$

1248	3567
2358	1467
3468	1257
4578	12 3 6
5618	2347
6728	1 3 45
7 <mark>13</mark> 8	2456

- It can be verified that each triple occurs in exactly one cell
- Each pair occurs in exactly three cells

< 47 ▶

$S = \{1, 2, 3, 4, 5, 6, 7, 8\}$

1248	3567
2358	1467
3468	1257
4578	1236
5618	2347
6728	1345
7138	2456

- It can be verified that each triple occurs in exactly one cell
- Each pair occurs in exactly three cells
- It is clear that each row contains each number once

 $S = \{1, 2, 3, 4, 5, 6, 7, 8\}$

1248	3567
2358	1467
3468	1257
4578	12 3 6
5618	2347
6728	13 45
7 <mark>13</mark> 8	2456

- It can be verified that each triple occurs in exactly one cell
- Each pair occurs in exactly three cells
- It is clear that each row contains each number once
- Each pair occurs in the same cell in exactly 3 rows

<i>S</i> =	: {1,	2,	3,	4,	5,	6,	7,	8}	ŀ
------------	-------	----	----	----	----	----	----	----	---

1248	3567	
2358	1467	
3468	1257	
4578	12 3 6	
5618	2347	
6728	1345	
7 <mark>13</mark> 8	2456	

- It can be verified that each triple occurs in exactly one cell
- Each pair occurs in exactly three cells
- It is clear that each row contains each number once
- Each pair occurs in the same cell in exactly 3 rows
- Each pair occurs in different cells in exactly 4 rows

Left	Right	Result
12345678	-	w ₀
1248	3567	w_1
2358	1467	<i>w</i> ₂
3468	1257	W3
4578	1236	W4
5618	2347	W5
6728	1345	W ₆
7138	2456	W ₇

• 8 trials total • $\hat{\theta}_i = ???$ • $Var(\hat{\theta}_i) = ???$

< A → <

< 3 >

Left	Right	Result
12345678	3 -	w ₀
1248	3567	w ₁
2358	1467	W ₂
3468	1257	W3
4578	1236	W4
5618	2347	W5
6728	1345	w ₆
7138	2456	W7

Let $\hat{\theta}_3 = \frac{1}{8}(w_0 - w_1 + w_2 + w_3 - w_4 - w_5 - w_6 + w_7)$

Left	Right	Result
12345678	-	Wo
1248	3567	w_1
2358	1467	W2
3468	1257	W3
4578	1236	W4
5618	2347	W5
6728	1345	W ₆
7138	2456	W7

Let $\hat{\theta}_3 = \frac{1}{8}(w_0 - w_1 + w_2 + w_3 - w_4 - w_5 - w_6 + w_7)$

Zoe Dann

Experimental Designs

April 28, 2024

< 47 ▶

→ 문 → 문

Left	Right	Result
12345678	-	Wo
1248	3567	w_1
2358	1467	W2
3468	1257	W3
4578	1236	W4
5618	2347	W ₅
6728	1345	W ₆
7138	2456	W7

Let
$$\hat{\theta}_3 = \frac{1}{8}(w_0 - w_1 + w_2 + w_3 - w_4 - w_5 - w_6 + w_7)$$

$$\mu(\hat{\theta}_3) = \frac{1}{8}(\mu(w_0) - \mu(w_1) + \dots)$$

$$= \frac{1}{8}(\theta_3 + \dots - (-\theta_3 + \dots) + \dots)$$

$$= \frac{8\theta_3 + \dots}{8} = \theta_3$$

Zoe Dann

April 28, 2024

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

æ

Left	Right	Result
12345678	-	w ₀
1248	3567	W_1
2358	1467	W2
3468	1257	W3
4578	1236	W4
5618	2347	W ₅
6728	1345	W ₆
7138	2456	W7

Let
$$\hat{\theta}_3 = \frac{1}{8}(w_0 - w_1 + w_2 + w_3 - w_4 - w_5 - w_6 + w_7)$$

 $Var(\hat{\theta}_2) = Var((w_0 - w_1 + w_2 + w_3 - w_4 - w_5 - w_6 + w_7)/8)$
 $= \frac{1}{64} \sum_{i=0}^7 Var(w_i)$
 $= \frac{\sigma^2}{8}$

April 28, 2024

Left	Right	Result
12345678	-	w ₀
1248	3567	w_1
2358	1467	<i>W</i> ₂
3468	1257	W3
4578	1236	W4
5618	2347	W ₅
6728	1345	W ₆
7138	2456	W ₇

• 8 trials total
•
$$\hat{\theta}_i = \frac{1}{8} \sum_j \text{left}(i, j) w_j$$

• $\mu(\hat{\theta}_i) = \theta_i$
• $\text{Var}(\hat{\theta}_i) = \sigma^2/8$

So what, I have linear algebra

• Matrix inverses exist and I don't like combinatorics

< 47 ▶

So what, I have linear algebra

- Matrix inverses exist and I don't like combinatorics
- You are just solving $A\theta + \varepsilon = \omega$, which can be solved with $\hat{\theta} = A^{-1}\omega$
- We can randomly fill the scales and take an inverse

• Combinatorics provides a unique optimal solution in general

< 47 ▶

э

- Combinatorics provides a unique optimal solution in general
- If $A^{-1} = (b_{ij})$, then $\operatorname{Var}(\hat{\theta}_i) = \sigma^2 \sum_{j=0}^7 b_{ij}^2$

< 4 ₽ > <

3

- Combinatorics provides a unique optimal solution in general
- If $A^{-1} = (b_{ij})$, then $Var(\hat{\theta}_i) = \sigma^2 \sum_{j=0}^7 b_{ij}^2$
- Since A has entries in $\{-1,1\}$, we must have $\sum_{j=0}^{7} |b_{ij}| \ge 1$

- Combinatorics provides a unique optimal solution in general
- If $A^{-1} = (b_{ij})$, then $Var(\hat{\theta}_i) = \sigma^2 \sum_{j=0}^7 b_{ij}^2$
- Since A has entries in $\{-1,1\}$, we must have $\sum_{i=0}^{7} |b_{ij}| \ge 1$
- The variance is minimised when all $b_{ij} = \pm \frac{1}{8}$

- Combinatorics provides a unique optimal solution in general
- If $A^{-1} = (b_{ij})$, then $Var(\hat{\theta}_i) = \sigma^2 \sum_{j=0}^7 b_{ij}^2$
- Since A has entries in $\{-1,1\}$, we must have $\sum_{j=0}^{7} |b_{ij}| \ge 1$
- The variance is minimised when all $b_{ij} = \pm \frac{1}{8}$
- This is exactly the combinatorial solution

• The Hadamard conjecture implies this can be done for any 4n

Image: A matrix

- The Hadamard conjecture implies this can be done for any 4n
- Can construct a scheme for any 4n such that 4n 1 is a prime power
- Can construct a scheme for any product of integers that work

• Efficiently testing samples for a hypothetical virus

- Efficiently testing samples for a hypothetical virus
- AIDS, Zika, SARS, spanish flu, bubonic plague

< 合型

- Efficiently testing samples for a hypothetical virus
- AIDS, Zika, SARS, spanish flu, bubonic plague
- Negative test implies all samples are uninfected

- Efficiently testing samples for a hypothetical virus
- AIDS, Zika, SARS, spanish flu, bubonic plague
- Negative test implies all samples are uninfected
- Assume that there are at most *d* infected samples

- Efficiently testing samples for a hypothetical virus
- AIDS, Zika, SARS, spanish flu, bubonic plague
- Negative test implies all samples are uninfected
- Assume that there are at most *d* infected samples
- Testing scheme doesn't change depending on results

More Magic Numbers

 $S = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$

- Easy to check that each pair occurs in exactly one cell
- The intersection of any two cells has at most one element

Sample	Tests
а	012
b	345
с	678
d	048
е	156
f	237
g	075
h	183
i	264
j	036
k	147
	258

- 9 tests in total
- 12 samples tested
- Assume there are 2 or less positive samples

< 47 ▶

Sample	Tests
а	012
b	345
с	678
d	048
е	156
f	237
g	075
h	183
i	264
j	036
k	147
	258

- 9 tests in total
- 12 samples tested
- Assume there are 2 or less positive samples

< 47 ▶

Sample	Tests
а	012
b	345
с	678
d	048
е	156
f	237
g	075
h	183
i	264
j	036
k	147
	258

- 9 tests in total
- 12 samples tested
- Assume there are 2 or less positive samples

< 47 ▶

Sample	Tests
а	012
b	345
С	678
d	048
е	156
f	237
g	075
h	183
i	264
j	036
k	147
	258

- 9 tests in total
- 12 samples tested
- Assume there are 2 or less positive samples

< 47 ▶

Sample	Tests
а	012
b	345
с	678
d	048
е	156
f	237
g	075
h	183
i	264
j	036
k	147
	258

- 9 tests in total
- 12 samples tested
- Assume there are 2 or less positive samples
- Can detect if 3 or more samples are positive

Group Testing Counterexample

Sample	Tests
а	012
b	345
с	678
d	048
е	156
f	237
g	075
h	183
i	264
j	036
k	147
	258

- 9 tests in total
- 12 samples tested
- Assume there are 2 or less positive samples
- Can detect if 3 or more samples are positive

• Can test $q^2 + q$ samples with q^2 tests, assuming a max of q - 1positive samples.

Image: A matrix and a matrix

э

- Can test $q^2 + q$ samples with q^2 tests, assuming a max of q 1 positive samples.
- Can test n(1+6n) or $\frac{(6n+3)(6n+2)}{6}$ samples with 6n + 1 or 6n + 3 tests, assuming a max of 2 positive samples.

- Can test $q^2 + q$ samples with q^2 tests, assuming a max of q 1 positive samples.
- Can test n(1+6n) or $\frac{(6n+3)(6n+2)}{6}$ samples with 6n + 1 or 6n + 3 tests, assuming a max of 2 positive samples.
- In general, any (v, k, 1) design implies the existence of a group test of $\frac{v(v-1)}{k(k-1)}$ samples over v tests if there are at most k-1 positive samples.